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Technical Appendices (not intended for publication)

F. Derivation of (9)

First, we need to solve (8). It will be convenient to restate the problem, and for that

purpose, note that
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can be rewritten [using (6) and (4)] as
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which by the definitions of y; and ¢ becomes:
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Hence, problem (8) can be restated as
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From the relevant first-order condition, —(1—98)597 (pus—1 + B(mus_1 — ) +(1—8)Ap, =

0, we recover ¢, as
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and the associated unemployment rate as
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Inserting (F.2) and (F.3) back into (F.1), then gives
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which is equation (9).

G. Proof that (D.3) applies and that rr is bounded in § for any given T

First, we find the MPE of a T-period game, when (13) applies. Equilibrium behavior of

the MA is described by a reaction function 7 (7§) defined as

1 ~
(78, up_1) = argmin {5 (1 —6) [u? + A2 + 6Ly (uy) s.t. (13), 78 given} , T >1.
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The relevant first-order condition is, using the definition of Ly, (D.2),

(1 —0) [~Bus + Amy] — 63 (71,T71 + 72,T71Ut) = 0.

Applying 7§ = m;, we then find

(1= 6) [=B (1 = p)un + pup1) + X = 88 (V1.0-1 + Vo1 (1 = p)n + pry1)) =0,
from which we obtain the MPE inflation rate conditional on v, r | and v, 7 ;:

OBy
T = ﬁ + giETl (1= plup +pupq1), T >1,
where 71 = 1+ 670 1/(1 = 96).

We then find the relevant Riccati equations to solve for the unknown parameters v, r,



V1,7 and 7, by noting that along the equilibrium path,
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Equating coefficients to u? ; on both sides of (G.1) gives the first Riccati equation:
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which after some manipulation can be written as a difference equation in xr:
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Note that this is precisely the same as that for yr, cf. equation (A.2).

Equating coefficients to u; 1 in (G.1) gives
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leading to a difference equation in ~y;
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Equating the constants on both sides of (G.1), yields
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leading to a difference equation in 7y,
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In order to characterize the solution to the system of Riccati equations, (G.2), (G.3) and
(G.4), we need first to find the relevant boundary conditions of the difference equations,
i.e., Y21, V1,1, and g, respectively. These are found by considering the MPE of a 1-
period game, where the loss of the future is given by SL" (0,uy), i.e., is characterized by a
reversion to the zero inflation rule. In such a game the MA minimizes £ (1 — 6) [uf + A} ]+
SL7(0,uy) s.t. (13), n¢ given. By use of (D.1), the relevant first-order condition reads:
-0 —=0)u+(1—06)A\my—68(c1 + couy) = 0. Applying that 7§ = 7, in equilibrium, this
condition yields the MPE inflation rate
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Combining (G.5) with the fact that u; = (1 — p) u,, + pus_1 in equilibrium, we recover the
loss of the 1-period MPE as
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from which it follows that
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are the relevant boundary conditions on, respectively, (G.2), (G.3), and (G.4)

the definitions of ¢; and ¢, these expressions are further reduced to:
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where (G.9) can be re-written in terms of x;:
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Note that this is precisely the same as y; for 7 = 0, cf. (A.4).
Having derived these boundary conditions, we can now characterize the

the system of Riccati equations. First note the recursive structure of (G.2),

. By use of

(G.12)

solution to
(G.3), and

(G.4). Equation (G.2) determines alone 7, r [together with boundary condition (G.12)].

Then, given this solution, equation (G.3) alone determines 7, ; [together with boundary

condition (G.10)]. Then, given these solutions, equation (G.4) finally determines 7,

[together with boundary condition (G.11)]. Since the determination of v,  follows from

the determination of x7, and since the determination of the latter exactly mimics that of

yr we can immediately apply the arguments of Appendix A to conclude that x is positive

and bounded for all T'.
Next we consider the properties of the solution to 7, . For convenience,

the first-order difference equation (G.3) as
TN = Qr 1 (1 =0)up + V7 1vyp_q, T >1,

with
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we rewrite
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both being bounded in 6 for any 7" because zp_; is. Equation (G.13) has the solution:
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which by use of (G.10) becomes
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In more condensed form, the solution can therefore be written as
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is a bounded function of § for any 7" since the 2;s and ¥ s are.
Now we can examine the properties of the solution to 7, 7. We first, for convenience,

rewrite the first-order difference equation (G.4), using (G.14), as
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This can be reduced in the following way:
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is bounded in § and T" because both zr_; and k1 r_; are. Equation (G.15) has the solution:
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In more condensed form, the solution can be written as

Yo = ko,r (1 —0) u?, (G.16)

where
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is a bounded function of ¢ for any given T since the ®;s are. This proves the form of the

(1—p)* |1+
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solution of v, as stated by (D.3) as well as the claim made in the proof of Proposition 3

that kg r is bounded in 6.

H. Proof that (E.4) applies and that ., is bounded in ¢ for any given T'

For the purpose of proving the claim, we need to determine the parameter 6, of the

function Ly (u; 1) as given by (E.3). Now this function must satisfy

1 _
Ly(u—1) = E,_y min {5 (1= 6) [uf + 7| + 06Lp—y (o) st (14), 75 given} . T>1.

From the relevant first-order condition (using the conjectured form of L), — (1 — &) Bu; +

(1 = 6) Amy— 687y, us = 0, we recover, by applying the expectations are formed rationally:
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The actual MPE inflation rate, conditional on v, ;, is the subsequently found as
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so the MPE unemployment rate becomes
A (H.2)
Up = Py 1 + ———¢4. H.
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We then solve for the unknown parameters of the function Ly. In equilibrium, the following

recursion holds:
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which by use of (E.3), (H.1) and (H.2) is equivalent of
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Equating coefficients on both sides to u?_; leads to (A.2), so the determination of y; and,
thus, 7, is unaltered by the introduction of supply shocks. Equating coefficients to o

gives a difference equation in Or:
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Equation (H.3) has the solution
Oy = Tiléi—l AYr—i (1—6)+67"19, (H.4)
i—=1 A+ ﬂQZUT—i . .

To complete the solution, however, we need to find the relevant boundary condition on
(H.3), i.e., #;. We must therefore consider the MPE of a 1-period game, where the loss of
the future is given by 6L"(s";u;). In this game, the MA minimizes 3 (1 — 6) [uf + A7) +
SL7(s";up) s.t. (H.2), m¢ given. By use of (E.1), the relevant first-order condition reads:
—(1-0)pu+1—=06)Am, —6(1—9) Tj"?“t = 0. Applying that expectations are ratio-
nal, we therefore have — (1 — ) Bpuy 1+ + (1 — 6) Ang — 6 (1 — 6) ﬁl—j’?put,l =0, or,
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Applying this, we find that actual MPE inflation is

| = Lput—l + b
A (1= 6p%) G2+ A(1—6p2)

Et. (H.5)

In consequence, MPE unemployment is

A(L—6p°)
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The expected loss of the MPE in the 1-period game is therefore, using (H.5) and (H.6),
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from which we immediately recover, by the conjecture (E.3),
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Inserting this back into (H.4), we can express 0 as
Or = K (1 o 6) >

where

= Ayr—; 1A (B2 + (1= 6p%)’)
= 52—1 Yr—i ] 6T—1_ ,
i = 2 L\ + BPyr_; " 2 (ﬁQ +A(1— 6p2))2

is a bounded function of 6 for any given 71" as yr is. This proves the form of the solution

i=1

of 7 as stated by (E.4) as well as the claim made in the proof of Proposition 4 that p; is
bounded in 6.

10



