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Appendix
A. The underlying model in detail

A.1. Utilities and private consumption

There are two countries labeled H(ome) and F'(oreign). These countries form a monetary
union. The population of the union is a continuum of agents on the interval [0,1]. The
population on the segment [0,n) belongs to country H, while the population on [n, 1]
belongs to country F'. In period ¢, the utility of the representative household j living in

country ¢ is given by
Ul =E ' [U(C)+V(G)—v(he)], 0<p<l, (A1)
s=t

where C7 is consumption, GY is per-capita public spending, and y/ is the amount of goods
that household j produces. The functions U and V are strictly increasing and strictly
concave, while v is increasing and strictly convex in y/. Further, Si is a disturbance
affecting the disutility of work, which will throughout be interpreted as a productivity
shock.!

The consumption index C7 is defined as

o ()" ) o

where CJ, and C% are the Dixit and Stiglitz (1977) indices of the sets of imperfectly

substitutable goods produced in countries H and F', respectively:

H F

' B = ' 1\ 1 p
CY = (ﬁ) /Od(h) ot dh , Ci= (1_n) /cj(f) o df
(A.3)

where ¢/ (h) and ¢/ (f) are j’s consumption of Home- and Foreign-produced goods h and
f, respectively, and o > 1 and of" > 1 are stochastic elasticities of substitution across
goods produced within a country, both with mean o. The time variation in the elasticity

of substitution will translate into time variation in the mark up, as we will see below.

'In the log-linearized model below, we consider only bounded fluctuations of at least order O (||¢]]),
where & is the vector of all disturbances in the economies.



The price index of country i is given by P' = (P%)" (P5)'™" where

1

A S L e R T LRI s
=3 [ mta] T | [ o]

and where p’ (h) and p' (f) are the prices in country i of the individual goods h and f
produced in Home and Foreign, respectively. Because purchasing power parity holds, in
the sequel, we will therefore drop the country superscript for prices. The terms of trade,
T, is defined as the ratio of the price of a bundle of goods produced in country F' and a
bundle of goods produced in country H. That is, T'= Pr/Py.

The allocation of resources over the various consumption goods takes place in three
steps. The intertemporal trade-off, analyzed below, determines CV. Given C, the house-
hold selects €%, and C% so as to minimize total expenditure PCY under restriction (A.2).
This yields:

-1

ol = n(P—If) I =nT* (Y, (A.4)
. P\t o

Cy = (1-n) - C'=(1-n)T7"C". (A.5)

Then, given C}{ and Cfp, the household optimally allocates spending over the individual
goods by minimizing PHC}; and PFC% under restriction (A.3). The implied demands for
individual good h, produced in country H, and individual good f, produced in country F',

are, respectively,

& (h) = (%LI)) g, o (f) = (p Zgﬁ ) ) e (A.6)

We assume that public spending is financed either by debt issuance or lump-sum tax-

ation. Per capita public spending in countries H and F' is given by the following indices,

respectively:
R R b | e ]
GH = —/ ge (h) =t dh] , Gf = —/ g9 (f) ¥ df] ) (A.7)
n Jo I1—n n

where ¢ (h) and ¢ (f) are public spending on individual goods h and f produced in Home
and Foreign, respectively.

Minimization of PgG* and PrG' under restriction (A.7) yields the governments’ de-



mands for the individual goods h and f:

g (h) = (p—“”) Gl a(f) = (1#) Gr. (A8)

Hence, combining (A.6) and (A.8), the total demands for the goods h and f are

H F
P h U -n p (f) 7 —-n
wim = (B2) " mecrvar). win- (% Ty v,
Py Py
(A.9)
where CV = fol Cdj, is aggregate consumption in the union.

Following Benigno and Benigno (2001), we assume that financial markets are complete
both at the domestic and at the international level. Furthermore, each individual’s initial
holding of any type of asset is zero. These assumptions imply perfect consumption risk-
sharing within each country and equalization of the marginal utilities of consumption

between countries:

Ue (CH) = Ue (CF). (A.10)

Hence, in the absence of exogenous disturbances to the marginal utility of consumption,
CH = CF = C}V. Therefore, from now on, we ignore superscripts and denote consumption

by C;. Further, the Euler equation is
Uc (Cy) = (1 + Ry) BE [Uc (Crin) (B Pria)] (A.11)

where R; is the nominal interest rate on an internationally-traded nominal bond. The
nominal interest rate is taken to be the union central bank’s policy instrument. Finally,

using the appropriate aggregators, aggregate demand in both countries is found as
vi=T!"C+ G, Y =T,"C,+G}. (A.12)

A.2. Firms

Individual j is the monopolist provider of good j. The structure of price setting is assumed
to be of the Calvo (1983) form. In each period, there is a fixed probability (1 — ') that
producer 5 who resides in ¢ can adjust his prices. This producer takes account of the fact
that a change in the price of his product affects the demand for it. However, because he is
infinitesimally small, he neglects any effects of his actions on aggregate variables. Hence,

if individual j has the “chance” to reset his price in period ¢, he chooses his price, denoted



P (4), to maximize
o

E; Z (O/ﬂ)k (Aot () Yok () = v (e (4) 5 €040) ]

k=0

where ;.4 (j) is given by (A.9), assuming that p, (j) still applies at ¢ + k, and . .
Uc (Cj +k) / Piyk is the marginal utility of nominal income. For a producer in country H

this results in the following optimality condition:

B Eq [220:0 (O‘Hﬁ)k ngvy (yt,t+k (h) ,é’fik) Yt t+k (h)}
E, [ZZO:O (@ B)" (ol — 1) MLy een (h)}

e (h) (A.13)

Realizing that, in equilibrium, each producer in a given country and a given period will
set the same price when offered the chance to reset its price, one can show that
H 1—cH ;H
Puy = [(L=a™) gy ()" o Py 7y T (A.14)
1
F

oF —oFToF
Pro = [(1=a")mn) +alppt T (A15)

B. Inefficient steady-state equilibrium

We now derive the steady state, which is taken to be the equilibrium that is attained
when prices are flexible and shocks are at the mean values, and when there are average
monopolistic distortions.

Under flexible prices, (A.13) is replaced by

Ui Vy (yt,t (]) afi)
ol —1 )\i

Pt (j ) = : (B-l)
Because each agent in a given country chooses the same price, we have that p; (j) = P
for all j living in Home, so that

o'

H
Ot

Uc (Ot) =

17;1—”vy (T} "Cy + G ¢l ), (B.2)

and that p; (j) = Pp, for all j living in Foreign, so that
O—tF —-n -n F, +F
Uc (Cy) = ﬁTt v, (T,7"Cy + G5/ (B.3)

t

Hence, the steady-state values for consumption and the terms of trade, conditional on



Home and Foreign public spending, follow upon setting the shocks o, and o} to their
(common) mean ¢ and the other shocks to zero in (B.2) and (B.3).

Before we continue, we introduce some notation. Following Benigno (2003), we de-
note with a superscript “W” a world aggregate and with a superscript “R” a relative
variable. Hence, for a generic variable X, define X" = nX*" + (1 —n) X¥ and X% =
X¥ — XH, Further, we introduce the following additional definitions, using an upperbar

on a variable to denote its steady state in the presence of monopolistic distortions: p =

Ve (O)T/Ue @) > 0; p, = Voo (C)T/Vi (@) > 0: 5 = vy, (V50) Vo, (V0) >
0 (because of symmetry, v =7 = Y); and S! (i = H, F) is defined such that
Vye (?; 0) 51 = —?vyy W ; 0) Si. Hence, S! is proportional to the productivity shock. Fi-
nally, we denote by 0 < ¢y = C'/Y < 1 the steady-state consumption share of output.
We consider a steady state in which the fiscal authorities coordinate their policies.
Hence, the steady-state values for public spending follow upon maximizing over {Gf }zi :

and {GSF}E;:

2 [ U4V (G - (el
B2 {+<1—n>[U<Os>+V(Gf)—v(nF;5§)}}’ .

s=t

with ¢/ and £ set to zero for all s > ¢ and taking into account the private sector first-order

conditions in a steady state:

(1 6)Ue () = T}, (T"C, + GI.0). (B.5)
(1 - 6) Uo (Cy) = T, ™0, (T7"Co + GF,0). (B.6)
where
p=1/o.

Setting the derivative of equation (B.4) with respect to G¥ to zero, we have:

S {nUC (Cy) ggt; (1—n)Uc (Cy) SGCH} +nVe (GY')

s=t

N o OT, . 00,
=30 {00 [ = mm e g+ 1 G - 0750

oT oC
5— F, — ) S —-n S
_Zﬁ t{l—n vy(Y 0) {(—n) i SGG{{+TS GGE]}
= 0.




This expression can be rewritten as:

oC, oC,
nUc (C1) gem + (1= n) Uc (Co) 5am +nVe (GF)
o, ac.
i O10) (=) 7o 4 05 | o, (0760
n+1) oT; “n oC,
—(1=n)uv, (¥/50) {( n) T, Y Crgr + T aGt;]

. %)
_ Z Bt {nu =) [y (V50) = T, (Y5 0)] TG aGTH}

s=t+1

- ac, ac,

ac,
oGH

+ i 51 [y (V150) T2+ (1= n) v, (¥:0) 757

s
s=t+1

Using that in steady state, 7, = 1, C, = C, Y = Y =Y, etc., Vs, we have:

Cy oC, — 0T} oC;
nUC@GH (1_n)U08GH+nVG m}y{(l_n)OGG{{—i—@Gf
— 0T, 8@}
—nv, — (1 —n)v, | —nC—==7 +
v (L=n)y, { oGE  oGH

> 5 [ (7.0) - 00 @) S

s=t+1

which, by (B.5) applied to the inefficient steady state, can be simplified further to:

8C't 8C't t 80
_ _ S U B.7
9GT vyﬁG{{ +nVg 10) g I6; (B.7)

Ue aGH
s=t+1

From the first-order condition with respect to GI', we derive a similar condition:

8Ct 8@ s—t
aGF ~Yagr (1=n)Ve—(1-n)v ——¢Zﬁ U(aGF (B.8)

s=t+1

Uc

We now differentiate (B.5) with respect to G and G, respectively, and (B.6) with

respect to GF and GY', respectively. This yields the following four conditions (where we



already use the fact that we are evaluating at the inefficient steady state):

1- T 1- Yo il .
( QS)UccaGtH ( n)vyaGH—l— Y {(1 n)CaGﬁ—i-aGﬁ—i-l}, (B.9)
aOt aT —_— aTt act
1— T - )Tt .
( ¢)U008Gf ( )vyaGF—i—vyy {(1 n)CaGf—i—aGf] , (B.10)
0C; o1, — o1, 0C,
1- = —nu——t .
(1—9) UccaGtH nvyaGH + Vyy { nO@GH edl (B.11)
8C't o7, Oig — 01T, t act
1- — = . .
Now, add n times (B.9) and (1 —n) times (B.11) to give:
0C, 0C,
1-— — = — . B.1
( ¢) UCC aGi'{ 'Uyy |:8G£{ + 77/:| ( 3)
Similarly, add n times (B.10) and (1 —n) times (B.12) to give:
0C, 0C,
1-— — = — 1-— . B.14
(1= 0) Ucerger =t [k + (1= )] (B.14)
We rewrite (B.13) and (B.14), to give, respectively:
oC, Ny,
_ , B.15
oG{! (1= 0)Ucc — vy ( )
0C; (1 —n) vy,
— B.16
oGf (1= 0)Ucc — vy ( )

We now also differentiate (B.5) in period s > ¢ with respect to G and G¥', respectively,

and (B.6) in period s > t with respect to GF and G¥', respectively. This yields the following

four conditions (where we already use the fact that we are evaluating at the inefficient

steady state):

(1 ¢)UCC§GOH = (1- )vyaaGTHJrvyy {(1—71)6;;;
(1 ¢)UCCSGCF = (1- )'Uyaagp + Uyy {(1—”)6%
1000l - [ o, o

0C,

0C,

aGT

ot

|\

(B.17)
(B.18)
(B.19)

(B.20)



Now, add n times (B.17) and (1 — n) times (B.19) to give:

0C oC,

(1 — ¢) UCC@ = ?}yy@.

(B.21)

We note that by (B.13) (1 — ¢) Ucc # —vy,. Hence, 0C;/0GH = 0. Similarly, add n times

(B.18) and (1 — n) times (B.20) to give:

0C, oC,
(1-9) UCC@ = YweE

Hence, 0C,/0GF = 0.Hence, (B.7) and (B.8) become, respectively:

[ 9C 9,

“oGH ~ vogH

ac, ac,
aGF — "aGF

+nVg —nv, = 0,

Uc +(1-n)Vg—(1-n)v, = 0.

Using (B.5) in inefficient steady state, we can write (B.23) as:

oC oC
UCW;—(1—¢)U0ﬁ+nvc—n(1—¢)lfc = 0,
oC
¢U08Gt]§+nvc—n(1—¢)zfc = 0,
oC
nVg = n(l—qﬁ)UC—qﬁUCﬁ,
oC
TLVG = Uc|:n(1—¢)—¢aG5{:|,
DUy, ]
Voo = Us|(1=0¢)—
¢ C{( ¢) (1_¢)U00_vyy

where we have substituted from (B.15). Further rewriting, we get

Ve = Uc|l—¢

(1—-¢)Ucc }

(1= ¢)Ucc — vy
(1-¢)pUc/C ]

(1—¢) pUc/C +nu, /Y |

VG - UC 1—¢

[ C
Vo = Ue|l—g— L% _},
i pv, /C +nu, Y
Ve = Up|1—o—2L }
L P+ ncy

(B.22)

(B.23)

(B.24)

(B.25)



The route via (B.16) yields the same outcome.

C. Efficient steady state and flex-price equilibrium

Here, we derive an approximation to the efficient flexible price equilibrium. The effi-
cient equilibrium obtains when there are no monopolistic distortions, which in this model
framework can be represented by the case where producers have no market power, i.e.,
it corresponds to letting o7 — oo in (B.2) and ¢! — oo in (B.3). We log linearize the
efficient equilibrium around the associated efficient steady state. Further, we will refer
to the outcomes of the variables in the efficient flex-price equilibrium as the (stochastic)

efficient rates.

C.1. Efficient steady state

We denote the equilibrium values of variables in this steady state by a star superscript.
Hence, the efficient steady-state values C* and T*, conditional on G*¥ and G*I', are

implicitly defined by:
Ue (C7) = (T "o, (T7)7" C" + G7150),
and
UC (C*) — (T*)—n 'Uy ((T*)—n C* + G*F; 0) 7

from which it follows that in a symmetric equilibrium 7* = 1. From (B.25) with ¢ = 0 we

obtain the steady-state values G* and G*I" for public spending as:
Ve (G*7) = v, (Y*7;0), Vo (GF) =v, (Y*750). (C.1)

Because Y* = Y*I' = Y* we have that G* = G*" = G*. Finally, we obtain the efficient
steady-state nominal (=real) interest rate from (A.11) as 1 + R* = 1/p.

C.2. Derivation of relationships between efficient and inefficient steady states

We derive ¢* = —In @/C*) and g* = —In @/G*), which we shall use in the sequel. To

this end, recall the steady-state relations derived earlier:

1-0)Ue (@) = v,(C+T0). 2
%@):%@Wf¢p], (C3)

P+ ncy




remembering that 7' = 1 and G"=G" =G" =G. Take a first-order Taylor approxima-

tion to (C.2) evaluated around the efficient steady state:

—¢p+pct = —nleyc +(1—cy)g'] &

n(l—cy)g"+(p+ney)c = &,

where we have used that C*/Y™* = ¢y + O (||£]|), because ¢ is O (|[]]).
first-order Taylor approximation of (C.3) around the efficient steady state:

p

* — _ + C* o=
Py9 ¢>p ey p
g* = ﬁ |:_ ¢ + C*:| )
py L p+ney

Substitute this into (C.4), to give:

P ¢
771—Cy —|:—
( )pg p+/’76Y

—n(L—cy)pd+np(1—cy) (p+ney) ¢+ p, (p+ney)c

+c*] +(p+ney)d = ¢p&

*

(C.4)

Also, take a

(C.5)

op, (p+ney)

(p+ney) [np (L —cv) +py (p+ney)] ¢ = d[p(n+p,) +ney (p, — )] <
(p+ney) [p(n+p,) +ney (pg—p)] ¢ = & [p(n+p,) +ney (p, —p)] &

. ¢
C =
p+ney
¢ = (p+ney)c.

Hence, we have

¢ = ¢/(P+770Y)>
g = 0.

C.3. Efficient flexible price equilibrium

Log-linearizing (B.5), with of’/ (0ff —1) = 1 imposed around the efficient steady state,

we have:

—C= (=T +n|(1=n) ey Ti+ ey Cot (1—ey) G| —nsf, (C§)

10



and an analogous equation for the Foreign country:
—pCy = —nT; + 1 [—ncYTN} +oyCi+ (1 —cy)GF| = ST (C.9)

Taking a weighted average (with weights n and 1 — n) of these equations, we obtain
—pCr =1 [Cyét + (1 —cy) CNJXV} —nS}". Hence,

~ n w1 AW
Ci=—s [st (1—cy) G } (C.10)

Subtracting (C.9) from (C.8) we obtain 0 = T} + 1 [CYTN} — (1 —cy) éﬂ +nSE and thus

o n AR R
T, = (1= cy)GF =57 .11
T ey (1—cy)Gy t ( )

Further, because Y = [(1 —n) (T C*T; + (T " C*C, + G*Héf{l/Y*H, we can
also write (C.8) as —pC, = (1—mn) ﬁ—i—nﬁH—nSf and (C.9) as —oC, = —nﬂ—l—nf/}F—nSf.
Taking a weighted average (with weights n and 1 — n) of these two equations, we then

obtain
—pCy =YW — S}, (C.12)

Combining this with (C.10), we find that:

~ 1— ~
YW= &SXV + Mgf‘/ (C.13)
p + ney p+ney

We solve now for Cle{ and Cle , thereby completing the solution of the efficient flex-price
equilibrium. Above we found the steady state values for public spending as the solutions

o (C.1). Further, we have that
Ve (G) = v, (567). (C.14)
To show this, set the derivative of (B.4) with respect to Gf to zero:

E, Zﬁs t {nUC (Cs) aaGCH (1—n)Uc (Cy) aaGCH] +nVg (Gf7)

5= gy OT . OC
e (o (256 [ - g+ oG] b (s

> T, oC,
~E ) g {(1 —n)vy, (V73€)) {—HTQ(”H)Q@ + TS”@} } =0. (C.19)
s=t

11



Using (B.2) with o/ — oo, (B.3) with of — co and (A.10), we have that Tyv, (Y.7; ) =
Uy (YSF, SSF), for all s > t. Hence, (C.15) becomes:

= ac, aC,
£S5 t{nUC (C) 5 + (1 =) Uc (C) aGH]
t t

s=t

0 [(1 — ) Ty 2L 4 T ac;{}
_EtZBS_tm}y (YQH’SE) H ¢H i aJ?G 1-n 0Cs
— (U= n)o, (V7€) [(-m) Ty + T 2]

+nVea (GH) — nwy, (Y;H, ff{)

- o, e e
_ EtZB t{nUC(O)aGH+(1_n)UC(OS) OCH — Uy (Y;H,SH)Tsl aG{{}
t

—i—nVG (Gt ) — Ny (Y;H,Q ) ,

which is equal to

0C; 0C,
= | e Ga - Ue(©) g
s— t
s=t Uy (Y; ’55 ) Ts naGH (1 o 77/) oGH
t t

+nV (GF) = nuy, (VI €F)
° oC,
= Et Zﬁs_t {n |:UC (Cs) — Tsl_n'l}y (}/;Ha Sf)} 8GH}

#5350 00 (€ - T, (V2560) S )

s=t

+nVg (Gf) — Ny (Y;Hagf) )

which is equal to

B3 {nlUo () - 7, (262)] 2

e 30 {1 e @) =1, (075 0) 35 |

—|—nVG (Gt ) — Ny (YtH, Sf)
— Vo (GF) —nw, (Y€1),

where in the final step we have used again (B.2) with o7 — co and (B.3) with of" — cc.

We log linearize (C.14) and find —pgéf{ =7 [(1 —n)eyTy +eyCo+ (1 —ey)GH| —

12



nSH, from which we obtain

GH = pg+nz71—0y) [Sff—cY ((1—n)ﬁ+@)] (C.16)

For Foreign spending we similarly find

GF = Py 271 o) [Sf —cy (—nﬁ + 5@)} : (C.17)

Together with (C.10) and (C.11), we then have four equations in four unknowns: G, G,

YN} and @. These equations are solved to yield

- np
C, = g SV, (C.18)
" oplpg (L —ev)] +nevp,
GV = ne SW. (C.19)
oplpgtn(L—ey)] +nevp,
GF = 1 SE. .20
opy (U mey) Fn(1—cy) ! (C.20)
T, =— 1Pg R (C.21)

s
py(L+ney)+n(l—cy) ™"

The above expressions have been derived as follows. Using (C.16) and (C.17), we

ot GE = — 1 (SR 4 ¢ T,). By substituting this into (C.11), one then recovers
& t pgtn(l—cy) \7t

(C.21). Next, combining (C.16) and (C.17) with weights n and (1 —n), respectively,
ields GV = —1— (SW —¢,C,). Combining this with (C.10), and solving, give
y t pgtn(l—cy) \ 7t

(C.19). Substituting (C.19) back into (C.10) and working out yield (C.18).
Finally, assuming that the inflation rate in the flex-price equilibrium is zero, we derive

the efficient nominal rate of interest from (A.11) as
ét = pEt (5154,.1 — 515) . (022)
D. The model under sticky prices

Log linearizing (A.11) and using (C.22), it is straightforward to derive (D.3) below, where
for a generic variable X, X=I (X/Y) Log linearizing (A.12), we derive (D.4) and (D.5),
below, and by log linearizing the definition of the terms of trade, T' = Pr/Pp, we obtain
(D.8). Most computationally intensive is the derivation of the Phillips curves, (D.6) and

(D.7) below, which we provide now.

13



We can rewrite (A.13), for i = H and j = h, as

o0

0=E Z ( 5) {P\t+kpt (h) + v, (yt,t+k (h) ;fﬂk)} Ytttk (h)} .

k=0

After substituting for A/, we obtain

00 H (h’) n—1
E, Z (&Hﬁ)k (Ut+k ) Uc (Ct+k) Prros kT+k Yoo (h) S =0, (D.1)
k=0 —Ufikvy (yt,t+k ( ) >€t+k)

To log linearize this condition around the steady state, we first need to log linearize
Y4k (R): taking logarithmic changes on both sides of (A.9) and evaluating around the

steady state, we obtain:

h Otk
dIny,x(h) = dln (P pi (h) ) +dIn [T} Crin + G
Ht+k

P h) — PydP C(1—n)dT, dcC dGH
G = —o adp: ( )_2 HAL g 1k n ( n) t—Hci‘ t+k + Al
P, Y
ge(h) = —o (ﬁt (h) — pH7t+l€) +cy ((1 —n) Tk + ét+k) +(1—ey) Gy
3o (h) = —0Prarn (h) +cy ((1 ) T + ét+k) +(1—cy)GH,.

Using this expression, the log-linearized version of (D.1) around the steady state is:

0=B Y (o)’ Puosk = (1= m) Toos = pC+ 25000
k=0 = [—U@,t+k +cy ((1 —n) Tyyr + Ct+k) +(1—cy)GH, —SH,

where pyiyx = In(pr (h) /Puiyx). We rewrite this expression, using that D, = prs —

k H .
25:1 Titss A8t

Pt _ E i (OaHﬁ)k 11—:% (1 - n) Tivr + P;;nn: C’t+k
- ~H Al
1-a®f k=0 +155 1+1n00t+k + 1 ((L—cy) Gl — Stlik)
- k
VB (079) [Z WgS] |
k=0 s=1

Log-linearizing (A.14), we obtain p;; = %Wf{ , which we use to simplify the previous

14
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expression:

1 AN —~
v at! ik T (1= n) T + 5752 Clp
1—aflB1—afl ~ B D (o8 G+ s (L= ey) GE - SE
k=0 - a'1+7]a' Otk 1+7]a' ¢y ) Uitk t+k
o0 k o
H s
+E Y (o) i

k=1

Finally, we then obtain

p_ (maa)(ima) | A (L= m) T4 S MR O

H
7 = A 1+no 1+no 14no +5Et7rt+1- (DQ)
a + 1 1 8H U] SH
1—0 14no 't 1+no

Combine (C.12) and (C.13) to find that C, = —2—SW — 2_Y)OW [Jsing this expres-
ptncy ptncy —
sion and (C.11), it is straightforward to show that — (1 +ney) (1 —n) T, — (p + ney) Cy —
n(1—cy)GH = —nSH. Hence, (D.2) can be rewritten as (D.6) below. In an analogous
fashion we derive (D.7) below.

Summarizing, the log-linearized system under sticky prices is given by

b (G0 = (G- @)+ (R R) -B)]. (D3)

VH = ¢ [(1 )T+ @} 4 (1—ey)GH, (D.4)

XAQF = ¢y [—nﬁ + @} + (1 —cy) @f, (D.5)

7l = BExI 4k (1-n) (ﬁ - ﬁ) vkl (@ - @) (D.6)
el (G = GIT) +uf!,

i = ﬁEtwﬁrl — Kkkn (ﬁ — TN}) + KL (C Ct) (D.7)

6 (GF =GP ) +uf,

(Tt - ﬁ) = (ﬁ—l - ft—l) + - (Tt - ft—l) ; (D.8)

15



which is the system (1)-(6) in the paper, where

k= kT (14ney), wo = k5 (1+ncy),
ke = w7 (p+ney), ke = K" (p+ney),
kg = kIn(l—cy), kg =kl —cy),
with
i (1=ap)(1-a")  ,  (1-a"p)(1-al)
a (14+no) of (1+no) 7
and where
W = WL = LT,

refer to inflation variations caused by fluctuations in producers’ market power. For any of

the cases with equal rigidities considered in the sequel, we define:

a = o' =ad", k=r" = kK",

— L H F — H F
Kp = Kp = Ky, Ko = Ko = K,
Ka = Ko =K.

E. Derivation of the micro-founded loss function

Here, we derive the utility-based loss function. The per-period average utility flows of the

households belonging to countries H and F', respectively, are:

wll =V +V (G =% [ o lnhyseh)an, (E.1)

wf =U@)+V (6 -1 [ o) ar (E:2)

The welfare criterion of the authorities (the common central bank and the coordinating

fiscal authorities) is a population weighted average of households’ utilities:
o .
W =E, Zﬁj [nwfl; + (1 —n)wf,;]. (E.3)
j=0
We start by making computations for Home. The computations for Foreign are analo-

gous and, therefore, not shown explicitly. After this, we combine the expressions for Home

and Foreign to obtain W¢.

16



E.1. The term U (CtH)

Take a second-order expansion of U (C;) around the steady-state value C:
_ 1 _
U(C) =U (C) +Uc (Ci = C) + JUcc (C: = T)" + O ([i]). (E4)

where O (||¢ H?’) stands for terms of third or higher order (remember that all variables are,
in equilibrium, functions of the shock vector, which exhibits bounded fluctuations of order

1€]1)- Note that a second-order log-expansion of C around C yields:
_ 1~
C,=0C {1+Ot+§cf} +O(JlEI) - (E.5)
Substitute (E.5) into (E.4) to give:
Vol AlA L 1A2 1 =2 (A)? 3
U(Cy) =U (C) + UcCT |Gy + 1C2| +3UccC” (G) + O (lglF) .
and thus

R - - ~\ 2
U(G) = UcC |Co+3CE| +3UccC” (G) +tip.+ O (I¢]) =

Uc
U(C) = UC[Cit3(1=p) G2 +tin.+0 (), (E.6)

[~ 12 1UccC (512 :
U(C) = UeC |G+ 02 +12C (Ot)]+t.1.p.+O(H€H3);‘

where “t.i.p.” stands for “terms independent of policy.”

E.2. The term V (Gf)
We approximate in an analogous way V' (Gf ) This yields:

~

V(G = VoG {@H +1a-p,) (GtH)Q] im0 (). (E.7)

Using (B.25) and assuming that ¢ is of at least order O (||£]]), we can write(E.7) as:

V(G = U Kl ~ o fncy) @t 1-p,) (@H)Q} ftip+O (), (E8)

N2
having used that —¢ (GH ) is of order at least O (||€]|).
t

17



E.3. The term v (y; (h) ;&)

Similarly, we take a second-order Taylor expansion of v (yt (h); € f{ ) around a steady state
where y, (h) = Y for each h and at each date ¢, and where ¢ = 0 at each date t. We

obtain:

2

v(ye(h):&") = v(Y30) +uy (3 (h) =) + v + 504 (ye (h) = Y)
el (e (h) = V) + 3 (67) weelt” + O (JIEIP) -

Then note that a second-order logarithmic expansion of y; (h) gives:
ye(h) =Y [L+ 3 (h) + 35 ()] + O (Ji€]l”) -

Using this expression, we simplify

0 (e (R)5E8) = vy (1) + 5 (3 () = V)7 + w46l () + v + O ([€]1°)

to
~ ~ 2 1’Uyy?/\ 2 'Uy§ . 3
(o (0)5€1) = 07 [ ) + 23 (02 + 22255 (02 1 55, )] +-cip.+ 0 ().
Yy y
or
_ ~ L+n. o Uy g~ . 3
vy (h): &) = v |G () + =5 (h) +-2&"5 (h)| +tip.+ O (lg]°)
Yy

Then, recalling the definition v,¢£]" = —Y,,SH for SH, we finally arrive at

0 (0):60) = 0 [0+ 520 (0 0S5 ()] + i+ O (1Y) (B9

Recall that (1 — ¢) Ue @) = v, (?; 0). Hence, using this, we can write (E.9) as

147 ~ .
15 1) = 0P ()] + i+ O (I€]°).

v (ys (R) ;€)= UcY {(1 — &)U (h) +

where we have used that ¢g; (h)* and ¢S, (h) are of order at least O (HSHP’)

18



This last expression should be integrated over the Home population, to find
1 [ I
— [ v (ye(h);&) dh
nJo
= UcY (1= &) Eni (h) + 52 [Varag (h) + [Enge (0)]°] = 0/ Eai (h)) + tip. + O ([l€]°) -
We then take a second-order log-expansion of the aggregator Y7 to obtain:

?tH = E,y (h)
= Eyu; (h)

+ 37N, () + O (J€]))
+ 3 Van g () + O (€

where we observe that

ot — oo fum (27 ()] + (i [(22) £ (=9]) ) + 0 Gleld)

and In [(Ui{;l) / (“—_1)} is of order at least O (||€]|), so that

g

S Varyg (h) = A Vargi (h) + O ([l€]1°)

Insert the implied value for E,y; (h) into the previous expression:

1f(<>m

~ 2 ~
= UsY ( — 1=1Var,5, (h) + 141 {Varh@ (h) + (y;H) } — UStHYtH)
+t.ip. +(9(H€H )
2 N
_ { YH—|—1—+’1 (YH) —% [07—1 —1—77} Var,y; (h) —nStHY;H} —i—t.i.p.—i—O(HSHP’)
~ 2 ~
— { ” (Y;H) + % [0_1 + 77} Varpy: (h) — nSfﬁH} + t.ip. +O (HSHP’) )

19



E.4. Combining the terms

Combining (E.6), (E.8) and the previous expression, the relevant Home welfare criterion

1S
H | A 1 2
wy = UcC | Cy + 5 (1 — p) Ot

UG Kl gt ) G+ 1 (1-,) (@H)Q]

P+ necy
~UcY [(1 — )V 451 (V1) 44 o7 4 ] VanGi (h) = nS['Y,"

+tip. + O (JI€]°)

or
H - ~ 1 2
wy = UCC{{Ct—i—i(l—p)Ct]

o (10 () 6+ 5 (- 0) (61)']

Cy
- fa-am

Cy

+tdp. + O (Jl¢]) -

For Foreign, we similarly find:
W = Ucﬁ{{aﬂr%(l—p)@f}
P (1ol Y a4y (-0 (€)'
- o T b (7)ot ) Vgl () - nf T |
+t.i.p. + O (HSHP’) :

20



Now, take a weighted average of w/’ and w] with weights n and 1 — n, respectively:
wy = Ucﬁ{[éﬂr%(l—p)@f}
1—cy P P o\ 2 ) 2
| (i) LA A (R (n(at) +(1-m) (GF)
N N2
| [0 (o7 00 )
+

oy (1 —n) VarsZ; (f)]

cy —l—% (0! + n] [nVar,g; (h)
—nSHYH — 1 (1 —n) SFYF
+tip. + O (JIEIf) - (E.10)

E.4.1. Expansion of ?t

Before continuing, we expand Y;”. Define the function W (V) = YH =In (YY), We

approximate this as:

A~

= W @)W (V) (5 - F) 50 () (15 - V) 0 ()

B YH -V 1 (VH-Y\ 5
- 0+ (B5) -5 () o)

2

TG+ G - (TT'C+G) o [T+ 6l - (T7'T+3) .
= = -5 = O (11€]1”)
Y 2 Y
12
T "C T O G -G e T O G -G
— t_ L +0O(l€1°) -
Y Yy 2 Y Y
(E.11)

Now define Z (1;,Cy) = T, 17n(C,. Taking a second-order Taylor expansion of Z (T3, Ct)
around the point (T ,5) gives:

Z(T,,C) = Z(T,0)+ Zr (T, = T) + 3 Zrr (T, = T)" + Zo (C, = O)
+1Zcc (Cr = C)’ + Zre (T, = T) (C. — C) + O (€]
= T7"C+0-n)T "C(,-T) - (1 —n)nT "V (1, - T)
T (G -0)+ (1-mT " (1, =T) (G~ C) + O (I¢]°)

— = 2
_ T (- T T (Tt% T) N e (Tt: T)

T (Ct - 6) L (1—nTT (Tt%T) (Cg 6) Lo ().

21
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Hence,

T e, —T "C

i T = 2
— ey (5 )~ =y (B2

T
vor (SZE) ra-mer (F27) (S25) v 016,

Into this expression, substitute:

_ ~ 14
G = ©(1+G+50) +0(el).

~ 1~
T, = T (1 +T; + in) + 0O (lE1)
so that the right-hand side becomes:

(1= n)ey (T 272) — 5 (0~ mymey (Ti +372)’
tor (G4 4CE) + (1 =m)ev (T+4T2) (G +4C2) + 0 (Ile))
= (1-n) eyT, + ey Cy + s (1—n) Cyj?
—3(1—n) n0yﬁ2 + 503/@2 + (1 —n) ey T,Cy + O (Hf”g)
= 1-n)eohi+oC+il-—n)’eT?+ievC? 4+ (1—n) ey TiC + O (I€]%) -

Using that
H __~ AL (Ar\? 3
G :G(1+Gt +§(Gt))+O(H€H )

we can write:

Y;H_? _ N T LA L1 N2 12 NP A
— = Cy (1 n) Tt + Ot + 5 (1 n) 7—; + QCt + (1 n) tht

Y
#a- o) (G4 (60)) + 0 (lel),
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Hence:

(27)

~ ~ ~ ~ ~~T2
= & a-m T+ G+ —n?T2+1C + (1 —n) 1,0}

h<

PO N N 7 [~ 1 /N2
20y (1— cy) [(1—n)Tt+ct+§(1—n)2T3+§cf+(1_n)tht} {G{%i (Gf) }
2 | AH 1 ~NH 2]? 3
+—e) |G +5(GF) | +o(lel?)
~ ~ ~ o~ ~ 2
= & A-n T+ 20 -n) TG + (1 o) (CF)

2y (1 —cy) 1 =) T,GH +2¢y (1 —ey) C,GH + O (|J€]) -

Hence,

(551) -
=[<>

T, +
P o [ A\ 2
(1 —c¢y) ( — 14 (1—n) T2——CY02 (1-n)3T,C,— (1 —c¢y) (Gf)
—ey(1=cy)(1=n)T,GF — ¢y (1 — ¢y) GG + 0O (HSHP’) :

?
(1—ey)GE+ 11 =n) ey T? + Loy C? + (1 = n) ey T;Cy

(-
ok
'y

or

- (1) -3 (45 o
= o (- T4 6) + (1 —er) ]

AN, ~ o~ 2
(1—n) ey (1—ey) T2+ ey (1= ey) C2+ Loy (1—cy) (Gf)
1—n)ey (1—ey)T,C, — ey (1 —ey) (1 —n) T,GF
—cy (1—¢ey) GG+ 0O (J1€)f) .
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In a similar way we derive the corresponding expression for the foreign country:

- YF-Y\ 1/YF-7\
- () -5 (M) o

= [CY (—nﬁ + at) + (1 —cy) @ﬂ

~, ~ ~ N\ 2
+%n20y (1 — Cy) Tt2 + %Cy (1 — Cy) Ot2 + %CY (1 — Cy) (GtF)

—ncy (1 —cy) T,Ci + cy (1—cy) nft@f
—ey (1= ey) GG+ 0 ([¢]) .
E.4.2. Continuation of approximation

To further work out the approximation of the welfare loss function, it is useful to compute

some numbers, before actually making the substitutions. We have:
YW= v+ (1-n)Yf
_ [Cyéﬁ(l—@)@ﬂ +ln(1—n)ey (1—cy) T2
a2 o~ A2
+3cy (1—cy) {n (Ct —Gf) +(1—n) (Ct —Gf) }
tey (1—ey)n(1—n) TGE+ O (I€If) .
Hence,
1-¢)T" = (1-¢) [CY@+ (1—CY)@W} +in(1—n)ey (1—cy) T2
2 N2
—i—%cY (1—cy) {n (Ct —Gf) + (1 —n) (Ct —Gf) }
tor (1=ey)n (1=n) LG+ O (J)).
again using that ¢ is of order at least O (||£]|). Further,

(7 = Jo (A-mT+G)+0a-e) 8] +O ().

(%) = [ov (o4 G) + (- e GF] +O(Ie).
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Hence,

n (?ﬁ)2 +(1-n) (YF)

= & [0-mT+ 8] +0-md [+ E] +
2ncy (1 — cy) [(1 —n) Ty + ct} GH 4 2(1—n)ey (1—ey) [—nﬁ + @} GF
(L= ey)? (G1) + (1 —m) (- o) (GF) +0(lel?)

— n [(1—n) T2 4201 -n)T,C, + A}Jr (1—n)c [QTf—znﬁ@Jréf}

+2cy (1 —cy) [Cth —n(l—mn) Tt@ﬂ

(o) (GF) 4 (L=n) (L e)? (@) + O (Iel).

Hence,
N2 N2
n() + - ()
= n(l—n) cYTt2 + CYCtQ +2cy (1 —cy) [@@XV —n(l—n) ﬁ@ﬂ
N2 N2
#1=e? o (6F) - (1) + 0 (et
= n(l—n) cYT —2cy (1 —cy)n(1—n) ﬁ@f +
N2
n {cth +2cy (1 —cy) Cth +(1—cy)? (Gf) }
. PN N2
(1—n) {cicf + 20y (1- &) GGF + (1 - ) (GF) } + 0 (JElP) -
Further,
IV = S ey (1=m T+ C0) + (1= er) G| +O (i)
SEVE = SF [ev (-nfi+ C) + (1= ) GF| + O (J¢))
Hence,

n[nSfﬁH—i-(l—n)Sf}ZF}
— ﬁnStH[Cy((l—n)ﬁ-l-é\t)—l—(l—cy)@ }4_

n(l—n)SF [CY (—nﬁ—i—@) +(1—cy)G } (el )
= —ncy (1 —n) nﬁStR + nCYatStW
(1= ev) [nSPGHE + (1= n) STGE] + O (IE])
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We can now start to make substitutions into (E.10). First, substitute the expression for

}ZW and observe that the linear terms cancel. Thus, we have:

Wt
UcC
- e LGl
+12_C—CYY (1-p,) {n (@f)Q + (1 —n) (@f)z]
—s2 A, — S22 [nVar, g, (h) + (1 — n) Va3, (f)] + tip. + O (|€]]°) (E.12)

2cy 2cy o

where

&
I

26 [cyét (1—cy)@W}

+n(1=n)ey (1 —cy)T? +2n(1—n)0y(1—0y ) T,GE
ey (1—cy) {n(ct—aff) +(1-n) (G -aF) 2}
+A4n(1-n)AET2—20+n) ey (1—cy)n(l—n)T,GE
T(1+n)n {cicf 42y (1—ey) CGH + (1 —ey)? (@ffﬂ
+(147)(1—n) {ciéf + 20y (1= ey) GGF + (1= ¢y )’ (@fﬂ

—2n [nStH?tH +(1—n) StF}A/tF} .

Substitute this back into (E.12), to give:

Wy ~ 77(1—CY)AW
— = oC,+op——=C
UoC oCy ¢p+ncy ¢

+(1_n)1 cy(l_pg)(@f) —(1-n)L CY(é\t—é\tF)Q

ki |32+ (1- e)® (GF) + 20y (1 - ) GiEY |

2cy

—(1—mn) {ciéf +2¢y (1 —ey) GGE + (1= ey)? (@5)2}
—In(1-n)(1—cy) T2 =n(1—n)(1—cy) ,GE
3= T+ (1 +n) 1 -e)nl-n) T,G]

- [nSH?H +(1—mn) StF?;F
— -2 119 [ Var,g; (h) + (1 — n) Varg; (f)] + tip. + O (HSHP’) .

2<:y o
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Hence,

UcC

Hence,

Hence,

U(l_CY)@W
p+mney

~ —~ 2
1= p— oy (L) G2 ndz2 [L—p, — (1= o) (14 )] (GF)

—~ 2
+(1=m) 52 1= p,— (1= ey) (1 +)] (GF)

AW ni=c ~H 2 1—c ~ AF 2
_(1+77)(1_CY)Oth - Y(Ct Gt) _(1_n)TY(Ot_Gt)
—3n (1 =n) (L+ney) TY +n (1= n) (1 = or) TG
+ [nSH?H +(1—n) StF}A/;F}

— 5 212 [0V, g, (h) + (1 = n) VargG (f)] + tip. + O (||€]) -

2cy T

¢Ci + ¢

6, + 1LV g
P+ ncy

HL ey (L] G4 nko [1—p, — (1= ) (L)) (GFF)
+(1—n) 5= 1 p,— (1—cy) (1+7)] (@f)Q
W) (e GEY e (6 -G1) —-w e (6 - aF)
—in(1=n) (1 +ney) T2+ nn (1 —n) (1 - cy) TGP

175 Gy — (1 —n) nTuSF + 2 (1 - cy) [nsff@f Y (1—n) sf@f}

— 51 119 (nVar, g, (B) + (1 — n) Varg: ()] + tip. + O (€]%) -

2<:y o

S

n 1—Cy -~
66, + o) g
P+ ncy

~3(p+m G+ 5 (L —cy) (L+1) CF
1— cY ~NH 2 1 ~H 2
0l (py ) (GF) 4+ 3 (1 —ev) (L4 (GF)
~ 2 ~

—(1=m) 5 (o, +0) (GF) +(1=m) 3 (1—ev) (1 4+n) (GF
_ _ AAW_ l—cy H2_ . l—cy A_AFQ

(1 + 77) (1 CY) Cth 5 Ot Gt (1 n) 5 t Gt
—3n (1 =n) (L+ney) TY +mm (1= n) (1 = or) TG
408 Gy — (1 —n)nTuSF + 2 (1 - cy) [nsff@f +(1—n) sf@f}
— 522 [nVar, g, (h) + (1 — n) Vargg, (f)] + tip. + O (J|€]F) .

2cy o

+¢
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n (1= cv) mw
¢Ct+¢ o+ ey G,

1 2 ~ ~NH 2 ni= ~H 2

~(p+mCE4ni (L —cy)(14n) (G- GIF) —ni (G- GF)
~ ~ 2
F(1-n)i1—e) (147 (ct ) (1—n)1cy(ct—ef)
=l (OB (GH) (=) (o, + ) (GF)

—n (1 —n)(1+ 770y)T1t +mn(1—n)(1— cY)Tt@f
+nSY G —n (1 —n)nTuSE + 2 (1 - cy) [nsff@f +(1—n) sf@f}
— 51 9% [nVary 3, (h) + (1 — n) Vars 7, (f)] + tip. + O (I€]°) -

2cy o

n(l—cy)

@W
P+ ncy t

¢Cy + ¢

~

~2 1 H 2 AF 2
—5 (p+ 1) C7 = 52 (p, +77){ (Gt) +(1—n)(Gt)]
1 ~ ~NH 2 ~ AF 2
+3 (1—cy)n {n (Ct—Gt ) + (1 —n) (Ct—Gt) }
—3n(L=n) (L+ney) T7 +nn (1= n) (1 = ey) TG
+nSY G — (1= n)nTiSE + 2 (1 —cy) [nsﬁ@f +(1—n) sf@f}
S22 (0 Var, g, (k) + (1 — n) Vargg, (f)] + ti.p. + O (J[€]]°) .

2<:y o
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Now, express everything in terms of gaps:

Wy -~ n(l—cy)
- = C’ +p——>7"
UcC ¢oCit+ ¢ P+ ney

_% . (6t_5t)2— 12—0in (pg_|_77) |:n (@f—éf)Q—l—(l—n) (@f_éf)Q]

AW
Gy

“in(=n) (Lt ney) (T~ T) +m(—n) (- o) (T~ T) (GF - GF)
—(p+1) CiCr = n222 (p, + 1) GEGH — (1= n) 22 (p, +n) GI G

+n (1 —cy) 77@@ —n(l—cy) natéf —n(l—cy) nét@f +n(1—cy) néf@f{
+(1=n)(1=cy)nCCy— (1 —=n) (1 = ey)nC,GF — (1 =n) (1 — ey) nC,GF
+(1-n)(1- cﬂnéf@f

—n(1—=n) (A +ney) LT, +nn (1 —n) (1 — ey) T,GE +mn (1 —n) (1 — oy) T,GF
S Co—n (L= ) nTySE + 2 (1= ey) [nSHGH + (11— n) SFGF

—-2 199 [nVar, 3, (h) + (1 — n) Varsg, (f)] + tip. + O (HSHP’) ,

2cy o
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where products of the exogenous natural levels of variables have been put into the “t.i.p.”.

Simplify the previous expression:

Wt
UcC
1 —
= oG+t Wgw
p+ncy

—35 (p+ney) (Ct - @) — nizr [Pg +71(1 = cy)] (@f{ - éf{)Q
2 [y + (1 - ev)] (Gf—Gf) —n(1-c)n (G- G) (G -Gl
(1 —n)(1—cy) (ct —ct) (@f—éf)

—In(1—n)(1 +ncy) (ﬁ—ﬁ)2+nn(1—n)(l—0y) (ft—ﬁ) (@f_éf)

-k

— (p + nCY) atét — (1 — CY) natéfv — (1 — CY) nétél/v
n= o +n(1—ey)] GIGH — (1—n) =2 [p,+ (1 —cy)] GF G

—n(l—n) (L +ney) LT+ (1 —n) (1 — cy) TGE +n (1 —n) (1 — cy) T,GE

+775W@ —n(1—n) nﬁStR + L (1—cy) [nStH@f +(1—n) Sf@f}
5o 2 [nVarygi (h) + (1 = n) Varsgi ()] + tip. + O ([€]) ,

2<:y o
We can rewrite the latest expression further as:

Wt _
UcC

= 6Ci+¢ | M2l GV 4

=3 (p+nev) (Ct Ot)2 — 42 [py (1 —ey)] (@f - éff)Q

—(1—n) 12—(3 [pg—|-’]7(1—6y)} @f—éf)Q—n(l—CY)n(@—@) (@f—éf)

ln(1—n)(1+ (f-f)Q (=) (Ti—T) (GF - an
2 ney) (i =Ti) +mm(1—n)(L—cy) (T = T2 ) (G — G,
+ACWt6t + AGHtéH + AGF,té\f + AT,tft

— 52222 [nVan, g, (k) + (1 — n) Var, G, ()] + tip. + O (&) ,

2cy o
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where

Aows = —(p+ney)Ci— (1 —cy)nGY +nSY

= 08 = (p+m Gt (1= ev)n (G- GY)

Acuy = —n(l—CY)ﬁCt—nl = [Pg+77(1—CY)} éf{

—nmm (1 —n)(1 —CY)Tt—i—i (1 —cy)nSE,

Agrs = —(1=n)(1—ey)nCy— (1—n) 522 [p, +n (1~ er)] GF

We shall now evaluate out these coeflicients A,;;. However, before doing so, we make use

+n(L—n)(1—ey) T+ 2L (1—cy) (1—n) SY,

Ary = —n(l=n)(L+ney) T +n (1= n) (1= ey) G = n (L = n)nSf.

(C.18) and (C.19), so that

Cy —

and

av - NPy W np "
| plog (U =ex)] +nevp, © plogtn(—en)] +nevp, ™
- n(py = p) W
plpy+n(—c)] +nevp, "
L W ~ ~W n ow
——(,09+77)Gt _n(ct—Gt)—i——St
Cy cy
1 np W
= (p + 5
Cy (pg 77) p) [pg + 1 (1 — cy)} +nevp, t
" (pg _ p) w n w
B S +—8S
np [p +1n (1 - CY)} + Ney Py ¢ Cy ¢
L np (pg + 1) . 7 (0, - p) ]
Cy P[P +77(1—CY)}+776ypg p[pg—i_n(l_cY)}‘i‘nCypg o |7
1 U
Cy p [pg +n(l—cy)] + ney Py
% [ (pg+1) + v (g = p) = p oy +1 (1 = ev)] = nevpg) St
1 n y
oy +n)— - +n(l— S
o 7T n (e Saerp, PPt —evmo=plpy =0 (1= )] S,
1 n y
oy +n) —plp, +n]]S
v p [,09 +n(l- CY)} + ey py [IO (Pg 77) P ['09 77“ t
0.
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Hence,

Acwy

= nStW—(p+77)5t+(1—cY)77(5t—5fV)

p, w 1(py = p) w
= 05" —(p+n) S+ (1 —ev)n S
o plog+n(1—cy)] +nevp, plog+n(L—cv)] +nevp,
. (p+n)p, (1—=ev)n(p, — p) o
plpg+n(l—cy)] +nevp,  plp,+n1—cy)] +nevp,|
U

plpg+1(1—cy)] +neyvp,

X [plpg +1(1=cy)] +nevp, — (p+m) py + (1 —cv)n(p, — p)] St
N w
= + —(p+n)p,+(1— IS
P [pg +n(1— CY)} + neyp, [,0,09 neypy = (p4m)pg+ (1= cx) 77'09} t

= 0.

and, noting that G =GV — (1—n)GE, SH =8 — (1 —n) SE and T, = —pgéf:

Yo = — (1= ey)nCo— 22 [p, + 51— ey)] [GF = (1-n) GE]
+np, (L—n) (1—cy) G+ 2L (1—cy) [S) — (1 —n) Sf]
1-— Cy

5 A gw) ., n(d—cy)
= = (pg+77)GtW—(1—6y)77(Ct—va)+Ty5tw

+ [ (1 —ey)] (1 —n) GE +1p, (1 —n) (1 —cy) GE

Cy

~ L (1-cy)(1—n)Sf

(1- n)cil —¢v) {[(pg +1(1—cy)) +np,ev] GE - 7755?}

= 0+0=0,

= 0+

and, noting that éf = é}f/ + néf, SF =SV +nSE and T, = —pgéf:

2 Aors = —(1—oy)nCy =12 [p, + 0 (1 — cy)] [éfV + néﬂ
—npgn (L —cy) G+ 2L (1 —cy) (S} +nSf)
= 0o [[Pg +n(1—cy)] G +np,er GF — 77551

= 0+0=0.
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and, noting that 7, = —pgéf:

Are = —n(l—n)(L4+ney) T+ (L —n) (1 - ey) GF — (1 - n)nSE
= —n(1=n) [(1+ney) T =0 (1 - ev) GR + 58]
= n(1=n) [(L+ney) p,GF 4+ (1 = ev) GF = nSf|
= 0+0.

Hence, all the A,; terms are zero, and we have in conclusion:

Wy n(l—cy) aw
UC 4G+ ¢ ,01+770y G
—3 (p+ney) ( )2 izt [pg + (1 —cov)] (@f_éf)Q
—(1—n) 5 [p,+n(1— )}( 55)
—n(1=ey)n (C—G) (GF = GIT) = (1=n) (1 = ex)n (C. = C) (GF = GF )

)
——n(l—n (1 +ncy) ( t— Tt) +nn(1—n)(1l—cy) (ft—ft) (@f_éf)
A9 [nVar,; (h) + (1 — n) Varg; (f)] + t.i.p. + O (HSHP)) .

2<:y o

Using (C.6) and (C.7), we can write:

G0
—3 (p+ney) (Ct 0)2 ni 2 [p,+n (1 —ev)] (@f —551)2
— (=) 52 [p, (1= ey)] (@f—éf) —n(1-ey)n (G- G) (G —a)
—(1=n) (=) (G =) (GF = GF)
“in(=n) (L tney) (T~ T) 4 —n) () (T~ T (GF - GF)

5oz 2% [nVar, g (h) + (1 — n) VarsGi (f)] + t-ip. + O ([€]]) ,

2<:y o

— (p+ney) ¢Ci+n (1 —ey) Gl
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and thus
wy
UsC
—(-m) %2 [o, 4+ —en)] (GF =GF) —n(1—ey)n (G- G- ) (GF - GF)
—(1—mn) (1—0y)n(6t—5t—c*) (@f—éf)
“in(=n) (Lt ney) (T~ T) +m@—n) (o) (T~ T) (GF - GF)
— 52 1% [ Var, g (h) + (1 — n) Vargi (f)] + tip. + O (|€]7)

2cy o

—3 (p+ney) (@ ~Ci - C*)Q — i gt (- ev)] (@ftH - éf)z

2cy

where we have put terms involving ¢*C;, ¢*GH and ¢*GF into “t.i.p.”. Furthermore, we
have written out 1 (1 — cy) c*@fv =n(l—cy)c [n@f{ +(1—n) @f} .
The final step is to derive Var,y; (h) and Var;y; (f). We have that

vary, [logy, (h)] = (0?)2 vary, [log p; (h)]
= o’vary, [logp; (h)] + O (HfHP’) .

We have
vary, [logps (h)] = vary [logp; (h) — p—1] = Ex [logp: (h) — pt—l]Q — (Aﬁt)Q

= a"Eyflogpi1 (h) — pial” + (1= o) flog fi () — pia]” — (Apr)°

= affvary, [logp,_1 (h)] + (1 — aH) [log p; (h) — pt_l]Q — (Apt)Q ,
where

pi = Ep [log py (h)] -
Further,
Dt — Pt—1 = (1 - OéH) log pr (h) — Pe-1] -

Hence,

vary, [log p; (h)] = a”vary, [logp; 1 (h)] + % (Apt)Q )
Using

pe = log Py + O (JI€]*)

we have:

vary, [logp, (h)] = o vary, [log p,_1 (h)] + % (WE)Q +0 (HSHP’) )
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Hence,

t

vary, [logp; (h)] = (aH)t+1 vary, [logp_1 (h)] + Z (OzH)t_S 135,, (Wf)Q +0O (HSHP’)
s=0
= 3 (@) 2y (71 + tip.+ O ([€])
s=0

and thus . i,

Zﬁtvarh [log p; (R)] = d” Z Ik (Wf)Q + t.ip. +O (HfHP’) ,

t=0 t=0
where

o

d? =

(1 —a®p)(1—a")

Similarly, we derive for Foreign:
~ - 2 :
Zﬁtvarf [logp; ()] = d* Zﬁt ()" +tip.+ 0O (HSH?’) ;
=0 t=0

where

OéF

(I-afp)(1-af)

dF

Hence, ignoring terms independent of policy as well as terms of order O (||¢ H?’) or higher,

the second-order welfare approximation is given by:

ZﬁtEO [wtc} )
t=0

where
;Jc% = —1(p+ney) (@ ~C, —c*)2 _n12_c(;y [py +n(1—cy)] (@f{ —éf{)z
—(-m 5 (o, 400 —en)] (GF - GF) — (=) (G- G ) (G - G)

(1= n) (14 gey) (ﬁ—ﬁ)2+nn(1—n)(1—w> (.- 7) (GF - cr)

— L 1ino [nanH (Wf)Q + (1 —n)o?d” (Wf)Q} )

2cy o
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Hence,

w =3UcC (1 +no)o/ey x

p

2

—oletn) (€, G, — o) — Mool (G- G
el (Gr - GF) - 2ioen (5, - G, - ) (GI - GY)
et (T, - 1)+ 2mtiggeieed (1, - 7,) (Gr - GF)

\ — [na? (z8)* + (1 = m)a* (xF)"] J

Observing that [nd” + (1 —n)d"] = [n/k" + (1 —n) /"] / (1 + 10), we can write

wtc = %Ucé [n/FaH + (1 —n) /RF} o/cy *

( 9 )

cy (p+ncy) o~ ~ % ”(1_CY)[P +77(1_CY)] ~ ~NH

(I—n)(A—cy)|pgtn(l—cy)| (A ~ 2cy (1—c A A D (A ~
- [n/nH:u[—iz)/nF]aY | (Gf B Gf) - [n/HH:—((l—n);}ZF]J (Ot —Ci—e ) (GXV B Gtw)
2

n(l—n)cy (14+nc T T 2nn(1—n)cy (1—c ™ = pa =~

_[nﬁnH-&—)(f—(n—)F/nn;])a (Tt o E) + [7:]/5(H+(i—yn()/n;]/3 (Tt - E) (Gi]f? - Gi{?)
\ = Ao (=) 4+ 2o ()]
where . .
d
)\ﬂ—H = n = n//-s y )\ﬂ.F =1- )\ﬂ.H.
nd? + (1 —n)d" n/kH +(1—n)/c"

Ignoring an irrelevant proportionality factor, the associated loss function is given by

L= AL, (B.13
t=0
where
( )\c (@—@—C*)Q—i—n)\g (é\fi—éfi)Q )
Ar AR\ ~ ~ * AW _ W
B IS (EOPY: (Gt —Gt) + 2\ (Ct—Ct—c ) (Gt — G ) @1

+Ar (Tt -

)" 2ue (77 (G2 )

+ )\ H (Wfi)Q + A\ F (Wf)Q
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where

(L—cv) [py+n(l—cy)] /o
n/kH + (1 —n) /k" 7

v, = _crlptney)fo N =
C T n/E+(1—n) /e TCT

cy (L—cy)n/o

Aca = n/k" + (1 —n) /kF’
N = n(l—n)ey (L+ncy) /o )\TG:n(l—n)nCY (1—cy)/o
— n/kE 4+ (1—-n) /T — on/kf+(1—n) /"

An alternative representation, which expresses the loss function exclusively in terms of un-

derlying parameters, follows by multiplying the above weights by [n/k" + (1 —n) /k"] o:

( )

cy (p+ney) (@—a—c*)Q
+n(1—cy) [py +1(1—cv)] (@f{ —@H)Q
FU=n) (=) [o, + 01 —e)] (GF - GF)
Li/A = +n (1 —n)cy (1 +ney) (ﬁ—ﬁ)Q ;
+2cy (1—cy)n (@ —a —C*) (@XV _étw)
~2n(1=n)ey (1 - ev)n (T - 1) (GF - GF)

no (1—n)o
\ o (7)) 4 ()

which is expression (8) in the paper, where A = [n/sf + (1 —n) /&"] 0.

F. Derivation of (9)-(12)

Take a weighted average with weights n and 1 —n of (D.6) and (D.7):

Y = ﬁEﬂTK/H + (1+ncy)n(l —n) (H}H — H}F) (ﬁ — ﬁ)
+(p+ney) [ + (1 —n) k"] (@ - @) +nkfn (1 —cy) (@f - éf{)

+(1—n)n(l—cy) (@f—éf) +uy”.
With equal rigidities we can write:
m = BEm}, +k [(p—i—ncY) (@ - @) +n(1—cy) (@f‘/ — CNJXV)} + .
Further, writing out L; in (E.14) yields:
L, = —2 [Ac (@ — @) + Aea (@tW — étWﬂ ¢+ tip.+ L7,
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2

where “t.1.p.” is a term independent of policy, namely A¢ (c*)2 and where

¥ = e (GomG) +an (T-T) i (GF -Gl
P (GF = GF) + A () + A ()
26 (d - @) (GXV el ) ~ e (ﬁ - ﬁ) (@f - éf) . (R

Define Q = 2——27 . We observe that 2\c = (p + ney ) Q, 2hce =1 (1 — ¢y) Q and

n/kH+(1-n)/kf "
2N = % [Pg +n(1— cY)} Q, so that we write:

L, =— (k) (m} — BEmy, — ") ¢ + tip.+ L}

Hence,

> BB [Le] = — (Q/k)c Z B'Ey (7}V — BEmY, —ulV) + tip. +Z B'E, [LF].
t=0

t=0

Using that ;2 B'Eo (7" — B}, —u”) = (7§ — BEen) —ul') + B (Eory — BEm )+

t
=7y — >0 B Eou”, we can write this last expression as:

Y BB [Li] = — (k)¢ ( ZﬁtEOut>+ tip.+ Y AE [L7],

which is equation (9) in the paper.
We note that for any generic variable X, the following holds:

n (X4 (1= n) (XF)" = (X") +n(1—n) (XB)2. (F.2)
Using this, we can rewrite L as:
LY =LY +n(l—n)LE (F.3)
which is equation (10) in the paper, where
S (GG e (G ) e () N (G- G (G - ar). )
which is equation (11) in the paper, and
= (T=T0) + (=) + 05 (G - GI) =2 (B -T) (G- GF). (05)
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which is equation (12) in the paper, where

w _ Koty w _ kG [Pg +n(1— CY)} w _ RGCy
)‘C = ) )‘G = ) )‘CG = )
o no o
R _ hkrty r _ ka [/Og +1n (1 - CY)} R _ Rgty
)\T = 9 )\G = Y )\TG -
o no o

G. Optimal commitment policies with equal rigidities

With equal rigidities, (D.6) and (D.7) become, respectively:
Tl = ﬁEﬂTﬁ_l + (1 —n) Ky (TA} — TN}) + ko (@ — a) + ka (@f{ — éf{) +u(G.1)
= ﬁEﬂTﬂ_l — nKp (TA} — TN}) + ko (@ — a) + ka (@f — éf) +ul. (G.2)

To solve for the optimal policies under commitment we set up the relevant Lagrangian
(see, e.g., Woodford, 1999):

L = Eoiﬁt {L?
t=0
+2¢, |:7T£{ — ﬁﬂfil —kr (1 —n) (ﬁ — ﬁ) — k¢ (é\t - 5t) e (@fl - éf) - ufl}
420y, [ = frliy o wen (T = B0) = v (Co= ) = v (GF = GF) =

V200, (B B) - (s~ Fia) —nf +nt 1 (B~ T}

where 2¢, ;, 2¢,,, and 2¢;, are the multipliers on (G.1), (G.2), and (D.8), respectively,
and LY is given by (F.1). Optimizing over C; —Cy, T, — T}, 7, nF', GH —GH, and GF — GF
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yields the following six necessary first-order conditions for ¢t > 1,

Ac (é\t - 6t) + Aca (@F/ - éfv) — Q16 — Poukc = 0,
(G.3)

Ar (ft - ft) — Arg (@f - éf) - ¢1,t"€T (1—-n)+ ¢2,t"€Tn + ¢3,t - ﬁ¢3,t+1 = 0,
(G.4)

AprTrf + G140 — Q141+ 93, = 0,
(G.5)

)\wFWf +Poy — oy 1 — 03, = 0,
(G.6)

nig (@f{ — éf{) + nAca (@ — @) + A\re (ﬁ — TN}) — ¢1kq = 0,
(G.7)

(1—n)Xg (@f — éf) + (1 —n)Ace (@ — a) — A\ra (TA} —TN}) — ¢k = 0.
(G.8)

Use the values of the loss function parameters to get

(key /o) (Ci = Cr) + (roey [0) (G = GI) = (914 + ) e =0,

(krn (1 — n) ey /o) (ﬁ - ﬁ) ~ (ken (1 —n)ey /o) (@f - éﬁ)
—¢1,t"€T (1—-n)+ ¢2,t’€Tn + ¢3,t - ﬁ¢3,t+1 =0,

nmy’ + Grp— Q141+ @3, =0,

(1—-mn) Wf + ¢2,t - ¢2,t—1 - ¢3,t =0,

n (k6 [py/n+ (1= o)) fo) (GI = GI) + n (kgev Jo) (G~ Co)

+ (kgn (1 —n) ey /o) (TA} — TN}) — ¢y kg =0,

(1= n) (ke [p,/n+ (1 —cy)] Jo) (@f . éf) + (1= n) (keey /o) (@ _ @)
—(ken (1 —n)ey/o) (TA} — TN}) — ¢y kc = 0.
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Hence,

(cy /o) (@ - @) + (:—zCY/U) (@XV - é}t/v) - (¢1,t + ¢2,t) =0, (G.9)

(krn (1 — n) ey /o) (ﬁ - ﬁ) ~ (ken (1 —n)ey /o) (@f - éf)

—¢y 457 (1 —n) + g phirn + ¢3; — Bogsy = 0, (G.10)
mrf{ + 1y — P11 + @3, =0, (G.11)
(1—-mn) Wf + ¢2,t - ¢2,t—1 - ¢3,t =0, (G.12)

n([pg/n+ (1 _CY)} /U) (@f{ —éf{) +n(cy/o) (@ —a)
%%nﬂ—nﬁww)@?—ﬁ)—%¢=Q (G.13)

(=) ([p,/n+ (= en)] Jo) (GF = GF) + (L= m) (ev/o) (G~ 1)
—(n(1—n)ey/o) (ﬁ - ﬁ) — $y, = 0. (G.14)

Adding the last two conditions gives
([pg/n+ (1 =ex)] fo) (GF = GI) + (ev /o) (Ci= Ci) = 61, + 6y

Combine this with the first equation:

(er/0) (6= C) + (%o ) (61 = G) = 6

C

to get

(lp/n+ (1 =e)] fo) (G = GI¥) + (ev [o) (Ci = Ci)

— (/o) (Gi=G) + (ZCerso) (GF - E) =
(:—201/) (er —av).

GV -GV =0,

([py/n+ (1 —ev)]) (GF - GI)

from which it follows that
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unless
Ra

([og/n+ (1 =cv)]) = PO
- n(l—cy)
pg/77+(1—CY) - (p+770Y)CY<:>

py(pt+mney)/n+(1—cy)(ptney) =n(l—cy)ey &
Pep/n+ pgcy + (1 —cy) (p+ney —ney) =0
Py/N+ pycy/p+ (1 —cy) =0,

which is never the case. l.e., world government spending gap is closed under the optimal
plan.
Adding the third and the fourth equation yields

T + (¢1,t + ¢2,t) - (¢1,t—1 + ¢2,t—1) =0,
and, therefore, by (G.9)
7T1/V = — (CY/U) [(é\t — 515) — (6t_1 — 6t_1)i| .

We now turn to the characterization of relative variables. The equations (G.13) and
(G.14) can be rearranged to (by multiplying the first by (1 — n) and multiplying the second
by n and then subtracting the first from the second)

(1 =n)n ([p,/n+ (1= ey)] fo) (GF  GF)
—(n(1=n)ey /o) (T, = T,) = nn, + (1= 1) 61, =0. (G.15)

From the “inflation equations” (G.11) and (G.12) we get
(1 —n)nmi+n (¢2,t - ¢2,t—1) —(1—=n) (¢1,t - ¢1,t—1) — @3, =0

(1 —n)nm}" + Ny, — (1 =n) gy —ndg, 1 +(1=n)py, — ¢3, =0.

Therefore,

(= n)nrf+ (1 =nm)n ([o,/n+ (1= ey)] /o) (GF = GF) = (n(1 = n)ev/o) (T, - T;)
— (=) ([og/n+ 1 =ey)] fo) (G =G ) + (U =n)ey/o) (Trs = Tia) = o5,
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(1 =n)naf + (1 =n)n ([p,/n+ (1= ev)] Jo) | (GF = GF) - (G, - GF,) |
~n=n)ev/o) [(T=T) = (Tr = Tt )| = 0

wf o+ ([oy/n+ (1 —ev)] Jo) | (GF = GF) - (GF, - G )|
~(ev/o) [(Ti=T) = (Tis = Tia)] = s,

or, by use of (D.8),
w4 ([og/n+ (1= ev)] fo) [(GF - GF) - (GF, - G|
~(ev/o) [7f = (T = Tr)] = u.

which becomes

wt (1= ey /o) + ([py/n+ (1= ev)] Jo) [ (GF = GF) = (G, - GE, )|
+(ev/o) (T = T ) = by,

Now examine

(krn (1 — n) ey /o) (ﬁ - ﬁ) ~ (ken (1 —n)ey /o) (@f - éﬁ)
— @167 (1 =) + ¢y irn + @3 — By, =0 &

(n(1—n)ey/o) (ﬁ - ﬁ) - (Z—in (1—n) cY/a) (@f - éﬁ)
¢3,t - ﬁ¢3,t+1

RT

=0.

—¢1; (1 —n)+ ¢y n +

We find n¢,; — (1 —n) ¢, from (G.15)

(1= m)n ([og/n+ (1 = ev)] fo) (GF = GF) = (n (1 =n)ev /o) (T, - T
= n¢2,t —(1—n) ¢1,t>
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to get:

(n(1—n)ey/o) ( Tt) - (Z—in (1—n) 0y/0) (@f - éf)
+ (1 =n)n ([p,/n+(1-ev)] Jo) (GF - GF)
( (1 _ n) Cy/a) ( Tt) ¢3t ﬁ¢3,t+1

KT
= 0

(1—n)n {([,og/n—i- (1—c¢y)] /o) — % (cY/U)] (@f —éf) —1—%_—5@537“1 —0.

T Kt
Using that
re _n(l=cy)
ke (1+mney)’
we get
(1—n)n {
o

=0,

poln+ (1 —ey) - =2 1= cv) CY] (@f - éf) M Yo

(14 ney) KT

and then

B kr(L—n)n [py/n+cevp, +(I—cv)] far  ~g
¢3,t - ﬁ¢3,t+1 - o { (1 T 770}/) :| (Gt - Gt ) )

Hence,

_ _kr(l=n)n P/t cvp,+(1—cv)] <= i [ Ar T
P34 = . { 1+ ney ;ﬁ (Gt+i Gt+i)‘

To sum up, we have
GV -GV =0,

WF/ = - (CY/U) [(é\t - 5t) - (6t—1 - 5t—1)} )

wf (1= ey /o) + ([py/n+ (1= ev)] Jo) [ (GF = GF) = (G - GE, )|
+ (v /o) (To = Trt) = a

¢3,t = d=n)n {Pg/ﬁ ikt ] Zﬁz ( t+i t+z) )

o 1+770y

which is the system (16)-(19) in the paper. Together with the Phillips curves the system
determines the six endogenous variables (@ — @), (@f{ —GH ), (GF GF ), i, wE
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and ¢ ,.

H. Optimal policies under discretion and equal rigidities

We observe that (G.1) and (G.2) can restated in terms of world and relative variables

exclusively:
ml = BBl + ke (Co= o) + e (G = G) +ul”, (1)

7 = BBl | — kp (f - f) + ke (@ﬁ - éﬁ) +ul, (H.2)

The problem is to minimize the stream of L7 as given by (F.3), subject to the constraints
(H.1), (H.2) and (D.8). Since the nominal interest rate can be adjusted freely at no
loss, we do not treat equation (D.3) as a constraint, but assume that the consumption
gap is treated as the monetary policy instrument directly, which together with the world
government spending gap and the relative government spending gap forms the full set of
policy instruments.

Having realized this, part of the discretionary optimization becomes simple; namely the
choice of world consumption and world government spending. Notice that these variables
do not affect the relative inflation rate, and nor do they affect the terms of trade directly;
cf. (H.2) and (D.8). Equally important, the variables enter the loss function additively
separable from the terms of trade and relative government spending. Hence, the optimal
choice of the consumption gap and world government spending gap can be cast as a
problem of minimizing the discounted sum of L? as given by (F.3), taking as given the
path of relative inflation rates and the terms of trade, subject to (H.1). This can be labelled
as the “world part” of the problem. One can then independently of this determine the
optimal relative spending gap as the one that minimizes the discounted sum of L? given
by (F.3), taking as given the path of world government spending, the world inflation rate
and the consumption gap, and where the minimization is subject to (H.2) and (D.8). This
can be labelled as the “relative part” of the problem. We now turn to solving these two

parts.

H.1. “The world part”

The “world part” of the problem reduces to a sequence of static optimization problems of
the form

(@—@)I,Iégiw—@f‘/) L, s.t. (H.1) (H.3)
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taking as given E,m}} |, as the period ¢ consumption gap or government spending gap have

no dynamic implications.

Substitute (H.1) into (F.3). Then, the necessary and sufficient first-order conditions to

(H.3) are:
(reey fo) (Co = C) + reml” + (raey fo) (G = GI) =0

(e [py/n + (L= e)] /o) (G = G ) + waml’ + (ngey o) (G = Ci) =0

Reducing these equations slightly, reveals the following:

(wh%@—@)ﬁ¥+(ww)@y—éﬂ ~ 0
el

([pg/n +(1— cY)] /0) (@XV — CNJXV) + 71 + (cy /o) (@ — @) =0
Hence, world government spending follows as

GV -GV =0,
which is the equation preceding equation (20) in the main text, and, hence,?
(6,
o

which is equation (20) of the main text.

H.2. The “relative part”

(H.4)

(H.5)

The “relative part” of the discretionary optimization problem involves, as mentioned, the

choice of relative government spending. For this purpose, it is important to acknowledge

that this choice only affect the relative inflation rate and the terms of trade. As these terms

enter additively in (F.3) (and relative government spending only enters multiplicatively

with the terms of trade), the problem “reduces” to one of minimizing the discounted sum

2The generality of this solution requires that

f6be 4 Ipufn+(1—£)] o

el%

which is easy to confirm.
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of

LE = (sn(—n)ey/o) (T~ T)
+n (1= ) (kg [p,/n+ (1 — )] Jo) (GF = éf)Q +n(l—n) (xF)*

—2(kgn (1 —n)ey /o) (ﬁ — ﬁ) (@f - éf) )
analogous to

- N2 N2
Lf = (krev/o) (To=T) + (ke [p,/n+ (1= ev)] o) (GF = GF)
+ () =2 (reev /o) (T, - T,) (G - GF)
subject to (H.2) and (D.8). This problem does not correspond to a sequence of one-period
problems, as the choice of (@f — éf) affects 7!, and thus (TA} — TN}) with direct loss
implications through the next period’s terms of trade (by the dynamics of (D.8)].

The period ¢ problem is therefore solved by dynamic programming with past period’s

terms-of-trade gap as the state variable. L.e., the problem is characterized by the recursion

V(T -Ti)

= min E,_; {(K}TCy/U) (ﬁ —ﬁ)Q + (F&G [pg/77+ (1-— CY)} /U) (@f - éf)2

(65-cr)
(8 2o o) (7~ T) (60— ) + v (7, - 73) ).

where V' is the “value” function, and where the minimization is subject to (H.2) and (D.8).

Now, combine these constraints to
T = ﬁEtﬂ-ﬁ-l — Kr [(Tt—l — Tt—l) + - (Tt — Tt_lﬂ
thG (@f - éf) +uf,
To proceed with the solution, assume that the relevant driving variables of the system of

relative variables, T,—T,_; and ult, both follow AR(1) processes.® Therefore we conjecture

that the solution to the relative variables will be linear functions of the state and driving

3As T, — T,_1 and uft both are linear functions of the underlying national shocks (productivity and
mark-up shocks, respectively), we could also have assumed that these shocks followed AR(1) (or more
general) processes and formulated the conjecture in terms of the state and all these shocks. This, however,
would make the exposition more messy, without affecting the characterization of optimal relative spending
gaps we present in the main text; cf. below.
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variables. I.e., we conjecture that
Wf = —b (ﬁ—l - ﬁ—l) + by (ft - ft—l) + b3uf> (H.6)

where by, by and bs are unknown coefficients to be determined. By use of (H.6) one obtains

relative inflation as

Wf = —bif (Tt - ﬁ) + SE, [52 (ft-&-l - ﬁ) + b3uﬁr1}

—RT [(ﬁ—1 _ﬁ—l) + = (ft —ﬁ—1)} + kg (@f —éf) + ugl,

Wf = —bf [(ﬁq - ft—l) + Wf - (ﬁ - ft—1)} + BE: [52 (ﬁﬂ - ﬁ) + b3uﬁr1}

—Kr [(ﬁ—l _ﬁ—l) + - (Tt —ﬁ—1)} + Ka (@f - éf) + g,

1+ B +rr) = —(bif+kr) [(ﬁ—l - ﬁ—l) - (ﬁ - ft—l)}

+rg (@f — éf) + up’ + BE; [bz (ﬁ—&-l - ﬁ) + b3uﬁr1} )

Wf = —% [(ﬁ—l _ft—l) - (ft - ft—1)} (H7)

ha (@f—-éf)+—

uf + ﬁEt [bz (ﬁ_;,_l - ﬁ) + bguﬁ_l}
+—
1+b6:18+kr

1+b6:18+ kr

Y

and the terms-of-trade gap as

fin T = (T T

(-0 - (B2

e AR AR
— (G -G
+1+mﬁ+nT(t t)+

- (ﬁ _ﬁ—l) 9

ul' + BE, [bg (TN}H — ﬁ) + b3uﬁ1}
14+ 68+ kr
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and, thus,

e m (s =) = (5T (H.8)
; T, — T R
+#§+HT (é\f — éiz) N u; + BE; [612—’(_7;1-; . Z;) + bgut_H} |

One can then insert (H.7) and (H.8) into the value function and obtain an unconstrained

minimization problem. The first-order condition for optimal G® — GF is

mwww(ﬁﬁ)acnﬂ%+(wﬂ%m+acﬂwﬂ(@f@ﬁ

) (@ﬁ _Gr
ork

iGa)

~ (rgey /o) (T, - )

o(T,-T.)
a(éﬁ—éﬁ)

o(T,-T)

—l—%ﬁV' (ﬁ _ﬁ) m

~ (kgey fo) (G - GF)
= 0,

or,

(krey (o) (T, = T0) T+ (1 [,/ + (1= )] fo) (G = GF)

1+ 0.8+ kr
Ry___ he 77 _ AR _ ARy Fe
HE) 5 e (hoer /o) (Tt Tt) (kaey /o) (Gt Gt) T
1 ~ ~ RaG
v (T -7 ) —2
AV ( t t) 14 0.8 + rp
_ (H.9)
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Differentiating the value function with respect to (ﬁ_l — ft_l) yields:

(1 -17)

Ttl—ﬁl)

’ﬂ)

évl (ﬁ—l - ﬁ—l) = (krey/o) ( ) (
) (@ﬁ - éﬁ)
0T —Trs)
o(Gr-ar)

+ (k6 [py/n+ (1= )] Jo) (G = GF)

ork ~
S Sy e ) S )
— (kgey /o) (@f — CNJ?) - (aT(Tt - ;t) )
t—1— L1
1 (o 0 (j;lt B ﬁ)
+§BV (Tt - T;t) 5 (ﬁ_l ~ ﬁ_l) . (H.lO)

By the Envelope Theorem, we eliminate all terms involving 9 (@f — éf) /O (ﬁ_l — ﬁ_l)
[the explicit ones and those implicitly appearing in 0 (TA} — TN}) /0 (ﬁ_l — ﬁ_l) and
87@{?/8 (ﬁ_l — ﬁ_l)] to get:

v (% T = T, — T, 1 r 0B+ Er
§V (Tt—1—Tt—1) = (krey /o) (Tt—Tt) T I — ! g
AR A 1
= troev /o) (G = GF) Ty ar
Lovi (7 _ 7 1
V=T ) T s H.11
+58V (71t Tt)1+blﬁ+nT (D
Multiply on both sides by k¢ to get
By (Fia=Tia) = (refo) (Tim ) S el D
2 _ _ L+ 01+ kr UL+ bB+ R
- ko
*Wﬂ@WRG)ﬁEﬁE
ka
v (T, -1 ) —2¢
ﬁ ( b ) 1+blﬁ+lﬁlT
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and add this to (H.9):

(krey /o) (ﬁ - ﬁ) S B (kG [pg/n+ (1 —cv)] /o) (@f N éf) *

1+b,8+krp
(7TR) #BG"‘HT (kgey /o) ( ) (kgey /o) ( éf) #BG"‘HT
3V (B-T) g, + 3V (B - 1)
= (wrey/o) (T - 1T0) #&RT - WRRG%
~(sey /o) (G = ) g+ 3 3V (-7 ¥ Tor

which simplifies to

(ng[ﬂﬁn—%(l—wnﬁ}/a)(@f——éf)—%(wf)ii;zg;llg
~(kgey /o) (Ti = 1) + 52V (Ti = Tia )

—7TRH;G blﬁ + KT
¢ 1—1—1?1ﬁ—i-:"€T7

from which one gets

1 ~ ~ ~ ~ ~ ~

SV (Ter = Toa) = (ev/0) (T = 1) = ([p/n+ (1L = ev)] Jo) (G = GF) =
Forward this one period, and use it in (H.9) to eliminate the derivative of the value function:

(wrey [0) (Ti = Th) {5 + (ne [/ + (1= o)) /o) (GF = GF)

1 + blﬁ + RT
Ry Ke A ) P
+(7Tt) 1+blﬁ+/€T (RGCY/O') T; Tt) (H}GCy/O') (Gt Gt) 1+blﬁ+ﬁ;T
bk ~ -

+T/3G+w (e /o) By (T = Tonn ) = ([pg/n+ (L= ev)] Jo) B (G, — G ) = Borl |

= 0
and thus
% T _ T . R . ~R
1468+ kr (T;t Tt) + ['09/77 +(1 CY)} (Gt G, )
9 R_ (T _F)__ e  (ar_g@r
B R (Tt Tt) L+ 013 + kr (Gt G )
f - ~ . _

+m [cyEt (TH - Tt+1) — [pg/n+ (1 —cy)] Ey (GﬁH - Gﬁl) - aEmgl}

= 0
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or,

ey 1+0pB) 15 = Cy kg SR SR o R
Bt S S YA Ny A e _ S
1+blﬁ+nT(t t)* BT 0.8+ rr (Gt Gt)+1+blﬁ+nT7rt
B

1+ 0.6+ kr [CYEt (T“rl B Tt“) — HE; (Gﬁu - Gﬁrl) - UEtWﬁH}

+
— 07
with

= py/n+ (1—cy).

This is further reduced to

—cy (1+b10) (TA} - TN}) + (1 4+ 018+ Kkr] — cyka) (@f - éf) + ol
+03 [CyEt (TA}H - TN}H) — nE; (@ﬁ-l - éﬁl) - UEﬂTﬁ_l}
= 0.

This equation is equation (21) of the main text, and will together with (H.7) and (H.8)
provide solutions for the paths for (@f - éf), (TA} - TN}) and 7 as functions of the

state and (TN} — ﬁ_l) and uf’. Given the assumption about the stochastic properties

of (TN} — ﬁ_l) and u* the solution can be characterized by the method of undertermined
coefficients. The coefficients found in this step will be functions of the unknown parameters
b1, by and b3. These are then finally identified by equating the coefficients in the solution
for 7 with those in the conjecture.

Note that indeed only the undetermined coefficient to the state variable appears in the
characterization of the solution of the system of relative variables as given by equation
(21). Hence, had we replaced (H.6), by a linear conjecture which depended on the state
and the underlying shocks [and assumed that these shocks were AR(1) or more general
processes|, we would have arrived at the same characterization of optimal relative spending
gaps as equation (21) of the main text. The reason is that the impact of government
spending changes on the inflation differential and the terms-of-trade-gap only depends
on the undetermined coefficient on the state variable. The coefficients on the shocks do
therefore not affect the first-order condition or the envelope condition [see equations (H.9)
and (H.11)]. We can therefore without loss of analytical generality arrive at equation (21)

with our parsimonious conjecture (H.6) as claimed in Footnote 3.
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I. Optimal monetary policy with constrained fiscal policy under equal rigidities

For convenience, we write (G.1) and (G.2) out as

nfl = BBl +n(1—n) (L+ney) (T =T) + k(p+ner) (G — o) +ull, (L)

T = BEmi, —kn(1+ncy) (TA} - TN}) + K (p+ney) (@ - @) +ul. (L.2)

The loss function is given by (F.1) with the coefficients given by (because rigidities equal

in the two countries):

Ao = key (p+ney) /o, A =kn(l—n)cy (1+ney) /o,

Ao = k(l—cy)[p,+n(l—cv)] /o, Aca=rey (1 —cy)n/o,
Are = kn(l—n)ney (1 —cy) /o,
At = Ny Arp=1-—n.

I.1. Characterization of optimal policies under precommitment

To solve for the optimal policies under commitment we set up the relevant Lagrangian
(see, e.g., Woodford, 1999):

L = E, i gLy
=0
+2¢, [Wf{ —Brf — k(1 —n)(1+ncy) (ﬁ — YN}) —k(p+ney) (@t — @) — uﬂ
+2¢y [Wf — By + En (1 +ney) (ﬁ — YN}) — Kk (p+mney) (@ — @) — uf}
+2¢3, [(ﬁ - ﬁ) - (ﬁ—l - ﬁ—l) R PR et (ﬁ — ft—l)} } ;
where 2¢, ;, 2¢,,, and 2¢;, are the multipliers on (I.1), (I.2), and (D.8), respectively.

Optimizing over C¥ — CW . T, — T,, = and 7, yields the following four necessary first-

order conditions for t > 1,

Ao (G = Ci) = b (p+mey) = Guumi(p+mey) = 0, (L3)

A (T = T0) = 614 (1= ) (14 ney) + dgin (14 mey) + 0y — Bp1 = 0,

(L.4)
nrf’ + b1y~ 1pq T 03, = 0, (L5)
(1—-n) Wf + ¢2,t - ¢2,t—1 - ¢3,t = 0. (L.6)
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Use that Ao = key (p + ney) /o to simplify (1.3):

C ~ ~

;Y (Ct - Ot) — Q14— Py = 0. (L.7)
Use that A\r = kn (1 —n)cy (1 +ncy) /o to simplify (1.4):

n(=m) 2 (Ti=T0) = 61, (1 =) + pm + — (630 = Bs01) = 0. (L8)

(1 +ney)

Add (L.5) and (1.6) to get

WXV = —¢1,t + ¢1,t—1 - ¢2,t + ¢2,t—1- (L.9)

Combine (1.7) and (1.9) to get

W= 1(6-8) - (- )] 110)

o

By taking an appropriately weighted average of the two Phillips curves, (I.1), and (1.2),

one gets a “world” Phillips curve given by
T = BEmY, + Kk (p+ ney) (@ - @) +uy . (I.11)

Note that (I.10) and (I.11) provide solutions for (@ — a) and ;"
Then note that an expression for the inflation differential, 7 can be obtained from
(I.1) and (1.2):

wf = BBl —n(Lney) (T=T) + 5 (p+ney) (Co— G) +uf

BBt — k(1= n) (1 +ney) (T = T) =k (p+ney) (G = G) - uff

= BEm, — k5 (1+ncy) (ﬁ - TN}) +uft (L.12)

It follows that (I.12) and (D.8) provide solutions for (TA} - TN}) and 7l

Hence, with solutions for (@ — @), 7, (TA} — TN}) and 7' one can readily get local

inflation rates as 7 =7}V — (1 — n) 7l and 7f" = 7}V + nrl.
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I.1.1. Deriving the solutions for (@ — @) and r}”

Substitute the expression for 7}" given by (1.10) into (I.11):

9 [(=G) ~ (61 o)
= _%Et [(6t+1 — 5t+1) - (at — @ﬂ + & (p + ney) (@ - at) +u)

which yields as second-order expectational difference equation in @ — @:

E, (@H . @H) - (1 + (1 + M)) (@ - @)

Cy
1 (A ~ o
—p ! (Ot—l — Ct—l) + BTYUtW’

or,

E, (@H . @H) - (1 + ! (1 + M)) (@ - @)

Cy
on 4  o(l—n) g

—_ _1 2 _N -
5 (Ct—l Ct—1)+ﬁcyut Gy U, (I.13)

This is solved by the methods of undetermined coefficients by conjecturing a solution of

the form:
é\t — 515 = Xc (é\t—l — 5t—1) — QDUHuf[ — gOUFuf (114)

Forward (I.14) one period and take period ¢ expectations:

Et (@H_l — 5154,_1) = Xc (at — 515) — QOUHEtUg_l — goUFEtug_l.

H

Assume that shocks follow AR(1) processes with persistence parameters yV# and Y%

respectively. We then get
Ey (6t+1 - 5t+1) =X (@ - @) A e TR e e T
which combined with (I1.13) gives
C (@ _ a) _ GVHAUHyH _ U UFF

— {1+ﬁ‘1 (1+%¢ncy))} (@—@)
o(l=n) r

on
H
+ Uy

- (@—1 - 5t—1) + Eut Bey
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or,

—1
-t s (00
XC — |1 + ﬁ_l (1 + ,0—77)/)
L Cy |
an UH_ . UH
T By T¥ 7 ot
r et
R )
L Cy J
o(1-n) UF.UF
+ Bey T uF
= = Uy -
XC — |1 +ﬁ_1 (1 + KO (P+770Y))
L Cy i

So, the undetermined coefficients must satisfy

X¢ = - b
XC_ {14_5—1 (1+ RU(P+770Y))}7

Cy
on UH.UH
UH Bey Ty

—® = r 0
o [ (1 )
Y J

o(l-n) UF.UF
UF Bey oy

—(p = — 3 .
_ + ney)
¢ |1ug1(q, Folptney)

X + 3 ( + o |

Hence, ¢ solves the polynomial

(x°)* - {1 +877 (1 4 T ('OJFWY))} XC+ Bt =0.

Cy

Of the two real roots, one is higher than one and one root is lower than one. Only, the
solution associated with the lower root is therefore consistent with a non-explosive rational

expectations equilibrium. We find

14871 (1+M) _\/(1—1-5_1 (1+M))2—45_1
Cy Cy
2

0<y’ = < 1.

Subsequently we find

on_ UH.UH
UH Bey Ty

T \C — (1+ﬁ—1 (1+’W(P+770Y)))7

Cy
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UH on
i Bey

UH on/ (Bey)

T e (1ot (1o 2T 0)) o

Cy

This is simplified, as we know from the above polynomial that

N (1+ﬁ_1 (1+ M(p+770y))> _ s

)
Cy x¢

SO

UH on/ (Bey)

2 = =
W= 5]\
C
= ox n > 0.

cy (1 —xOByVH)

Likewise, ¢! is found as

C

UF ox

- 1—n)>0.

v cy (1 — xCpyUF) ( )
World inflation then follows from (I.10) as
c ~ -

W}E/V = —;Y [XC (Ot—l — Ot_l) _ SOUHUE QOUF F (Ot L — Ct 1)i|

¢ o ~ c

= (=) (ct_l _ct_l) _ngzm n Sy,

XC—(1+B‘1 (1+M)) _XC—(1+B‘1 (1+
Y

Cy

ko (p + ney)

To sum up, the closed-form solutions for the precommitment consumption gap and world

inflation, which we discuss in the main text, are

6t - @ = Xc (Ct—l - 5t—1) - SOUHUfI SOUFUf

C -~ ~ Cy
m’ = (1 =x) (Coa = G ) + SV ufl + P

o

with

1+ 871 (1+M) _\/(1—1-5_1 (1+M)>2—45_1
c Cy Cy

2

o7

<1,

)



C

UH _ ox
= n >0,
4 cy (1 —x9ByVH)
C
U = X (1-mn)>0.

ey (1 =x9B7YF)
I.1.2. Deriving the solutions for 7, and 77

We proceed as in the previous subsubsection. Use (D.8) in (I1.12) to eliminate 7/ and get
a second-order expectational difference equation in the term of trade. Note, however, that
it is convenient only to solve for TA}, as one then avoids dealing with the lagged natural

rate of the terms of trade. Hence, one uses the relationship
ﬂ-i]ﬁ? = ﬂ - Tt—17

to obtain
T,— T,y = BE, (TA}H —ﬁ) — k(1 +mncy) (ﬁ —TN}) + uf,

and thus

BT = [1+87 (L+x1+ney)] T — BTy

B (L +ney) T, — 71 (ul” —ul?). (I.15)
Remember that
T, = -I(sf-5/),
NP,

I =

py (L+mney) +n (1 —cy)’

with
SZ:’-YS[SZ—l—i_Mt‘S:Z? 2:H7F

We now conjecture that (I.15) has the following solution:
T, = XTTA}_l — WIS 4 WSHESH L JUEGE — WUHE,
Forward it one period and take expectations:

- T SF _SF QF SH _SH oH UF _UF, F UH UH, 6 H
ET =x"Ti —w 7Sy w7y S +w iy ey —w Ty Ty
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Combine it with the difference equation to get:

T4 SF, SFqF |  SH SHQH ,  UF UF F _  UH UH H
X T —w 7Sy +w? ST w ey Ty —wt Ty Ty

= (1487 A+ t+ne) T -5 T
+B87'k (1 +ney)DSF — B (L + ney) TS = 71 (uf — ') .

So as to get

S gt ~
T, = N (1—1—5_1 (1+/€(1+770y)))Tt_1

B (L4 ney) D +wSFySF Bk (L+ney) T+ wSHSH g

(A AR 4ne)) X = (LB (LR (L er)))
ﬁ_l—l-wUF’)/UF » ﬁ_l—FwUH’)/UH "

B Rt e) T (A AR (o))

So the undetermined coefficients are determined by

T Ci

X - T 1 9
XT— 1+ 1+ r(14ney)))

o B (1 +ney) T+ wSFASF
w = — ,
XT= (1487 1+ k(1 +ney)))

S B (1 +ney) T+ wHASH
w = —— — ,
X' =1+ (1 +r(14ney)))
XT—(1+8 1 (1+k1+ne)))’

X' =1+ 87 A+ r 1 +ney)))

As in the previous subsection we find 7 as

L4+ 87 (L h (L4 ney) = /(1487 (L4 £ (1+ney))* — 487
2

< 1.

0<x! =

Using that
1

X' = (1+ 87 A+ R +mney)))

X8 =-
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we simplify the identification of the remainder parameters as

SSF = (ﬁ 1 1+770y)F+wSnySF)
SSH = (ﬁ 1 1+ncy)r+wSH,ySH)
JUF = (ﬁ i wUF,yUF)
WUH = \TB(B7" 4+ wUHAVHY .
So we get
5P~ X e Aney)l s _ X R+ ney) T
1_XTB,-}/SF ’ 1_XTB,YSH )
1 — xTByUE’ 1 — T3 VH
We note that
Wf = Tt - Tt—1
— T — WSS WSS U — W - T

= — (1= x") Tims — w*F8f + WS+ W) — WU Huf.

To repeat, the closed-form solutions for YA} and 7, which we discuss in the main text, are

given by
T = X"Tho1 — 5 SF + wSHSH 4 WVl — WVl (I.16)
and
T = — (1 - XT) ft—l — wSFSf + wSHSH + wVFul — WVH (I.17)
with
s 1 + B8 A4+ w1 +ney)) — \/(1 +8 1+ rk(1 +770y)))2 — 4571
2
LsF . X e Aney)T s _ X'k (L +7ney)T
L—xTpyst 7 L—xTpySH
T T
JUF = X 7 WUH — X .
L= x"pyY" L —xTpyuH
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We can then finally find the solution for the local inflation rates as
il = o —(1—n)xf
c ~ ~ Cy
= (X (Cror = Cima) + Ml + P uf

—(1—-n) [_ (1_XT) ﬁ_l_wSFSf+w5HSH+wUF F wUHufi 7

and

Wf = 7rtW—|—n7rf
C ~ ~
(1 3) (G o)+ Lt + Ly
o o

+n [_ (1 _ XT) ﬁ_l — WIFSE 4 WSHGH | (UFyF _ (UH H]

I.2. Characterization of optimal monetary policies under discretion

Under discretion, monetary policy cannot affect expected future variables (given the ab-
sence of endogenous persistence). Hence, it will at date ¢ take E;my’ | and E;nf,, as given.
Hence, its optimization implies a sequence of static optimization problems. Furthermore,
as the terms of trade is not affected by the consumption gap, the terms of trade will follow
the same path as under the precommitment solution.

When setting (@ — @), the central bank solves
~ - N2
min )\20 (Ct — Ct) + Ar (Tt — Tt) + A\u (wf)Q + A7 (Wf)27

subject to (I.1) and (I.2). Inserting these directly into the loss function results in an

unconstrained minimization problem, and the first-order condition is

Ao (@ . @)

e (p+mey) (BEafly + k(1 =n) (L4 ney) (T = T3) +r (p+mey) (G = i) +uf)

+Ar i (p+ney) (ﬁEmﬂl — kn (14 ney) (Tt - ﬁ) + £ (p+ney) (@ - @) + uf)
= 0.
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Now apply the values of A\¢, A\,# and A r under symmetry:

(sex (p-+mev) /o) (Ce = C.)

i (p -+ ney) (BBl + k(1 =) (1+ney) (T = T2) + o+ ney) (G — Cr) +uf

A~ ~

+(1—n)k(p+ney) (ﬁEﬂTﬁ_l — kn (1 +ncy) (Tt —Tt) + kK (p+ncy) ( A

= 0.
This reduces to

(cy /o) (@ . @)

A~ ~ o~ ~

+n (ﬁEmﬂl +k(1—n)(1+ney) (Tt — Tt) + k(p+ncy) (Ct — Ct) + ul?

A~ ~

(1= n) (BBfy = wn (Ut ner) (T = T2) + 5 p 4 nev) (G = Co
= ()7

and, then, by (L.1) and (I.2) again, to

= -2 (G- C).

I.2.1. Deriving the solutions for (@ — @) and r}”

To obtain solutions we combine

- (6-6),

and
Y = gty 4 o) (G G il

Eliminate the consumption gap from the Phillips curve:

ko (p + ney)

w w
T U,
Cy

woo_ w
T, = PEm, —

) (14 ko (p+ney) Jey] = BEm +u”,

or,

Erfty =B 1+ ko (p+ney) Jey]m — 57 [nuf{ +(1—n) uﬂ .
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Conjecture a solution of the form

W _  WH.H WF F
Ty =@ U P Uy,

where " and "' are to be determined. Forward the conjecture and take period ¢
expectations:

Bty = @yl 4+ VAU
We then get

WH. UH, H WF. UF, F
e 7 L A
WH, H WF,_ F

= B+ ko (p+ney) fev] (@ ul + ")
-5t [nuf—i— (1—n) uﬂ,

which identify the unknown coefficients according to

"1+ ko (p+ney) fey] " = B7Mn,

1+ ko (p+mney) fey] ™ =571 (1 —n).

QDWH’}/UH ﬁ_
ﬁ_

SDWF,YUF

It thus follows that

WH B 'n
VI — B 1+ ko (p+ney) fey]

or, more conveniently,

eWH = - >0,

Ko (p+mney) [ey +1— ByUH
1—n
WF
— > 0.
7 ko (p+ney) [ey +1 = y7F

To sum up, the solutions for world inflation and the consumption gap, which we discuss
in the main text, are

W _  WH, H WF, F
Ty =@ U e U,

and

g g

_ WH, K H WF, F

Ci—Ci=——0""u ——p" "uy,
Cy Cy
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where

WH _ n -0
ko (p+ney) Jey +1—pyVH — 7
WF  _ I—n -0
ko (p+mney) [ey +1 = ByUF

1.2.2. Deriving the solutions for 7, and 77

As we notice in the main text, the solutions for T, and 7l are independent of the monetary
regime and, therefore, again given by (1.16) and (I.17), respectively.

We then get the local inflation rates as

= ¥ —(1—n)rf

_ WH, H WF, F
= ¢ T Ty

—(1—mn) [— (1—XT)7A}_1—wSFSf+wSHStH+wUFuf—wUHuf ,

and
F _ W R
T, = T +nm
_ WH. H WF_ F
= ¢ U te Y
T\ F oF H oH F._F H_ H
—l—n[—(l—x )Ty — w ¥ SE + w1 SH + WVl — WV
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