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Preface

This note deals with interest-rate setting in a simple dynamic macroeconomic setting.

The purpose is to present some basic and central properties of an optimal interest-rate

rule. The model framework predates the New-Keynesian paradigm of the late 1990s

and onwards (it is accordingly dubbed “Old-Keynesian” by, e.g., Cochrane, 2011), but

the simplicity of the framework allows clear-cut results to be stated, and fundamental

properties of inflation-targeting regimes to be analyzed.

The exposition builds to some extent on Svensson (1997) and Walsh (2003, Section

10.4.2), and merges these presentations into one model.

Henrik Jensen, April 2011



1 Introduction

When setting the nominal interest rate, a central bank faces a number of issues. First of

all, it must take into account its mandate for policymaking. Should it aim for stable prices?

Stable employment? A combination of the two? Or maybe something else? Secondly, its

decisions are diffi cult since information about relevant macroeconomic variables, which

can be influenced by policy, are often not available at the time of policy implementation.

As an example, most empirical evidence supports that inflation today to some extent

is not controllable by a central bank; instead its actions will influence future inflation.

Hence, expectations about future economic developments become central for a central

bank taking actions today.

This note will settle these issues in a model that, despite its simplicity, captures some

features of real-life economies, and results in a portrayal of optimal interest-rate setting,

which resembles observed behavior by many central banks. In particular, the model can be

used to highlight some basic properties of inflation targeting– the monetary policymaking

regime that since the 1990s has been adopted by numerous central banks around the globe.

2 The Model

The model is a dynamic, log-linear IS/AS model. While it captures elements of models

based on optimizing behavior, there is no explicit micro foundations, and one should be

appropriately careful by using it to assess the performance of different policy regimes.

However, the main purpose here is to spell out some basic features of optimal interest-rate

setting, so the Lucas critique is ignored.

The demand side of the model is given by an “IS curve”:

yt+1 = θyt − σ−1 (it − Etπt+1) + ut+1, 0 < θ < 1, σ > 0, (1)

where yt+1 is log of output, it is the nominal interest rate (the monetary policy instrument),

πt+1 is the inflation rate, ut+1 is a mean-zero, serially uncorrelated shock. Et is the

rational-expectations operator conditional on information up to and including period t.

The economy’s supply side is characterized by a Phillips-curve relationship:

πt+1 = πt + κyt + et+1, κ > 0, (2)

where et+1 is a mean-zero, serially uncorrelated shock.

The central aspect of the model is the timing. As seen from (1), any changes in the

nominal interest rate affects output with a one-period lag. If the model is interpreted as

quarterly, this does not appear unrealistic. Likewise, there is a delay between changes in

demand in the economy and the inflation rate; cf. (2) where it is period-t output that

affects period-t+ 1 inflation. Apart from these delayed effects of the nominal interest rate

and demand, respectively, the equations have the usual interpretations.
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The delays have important implications for the impact of a change in monetary policy

in period t: It affects demand (output) one period ahead, and inflation (through the

demand channel) two periods ahead. The feature that demand is affected first and inflation

last, is in accordance with much VAR evidence, and is conventional wisdom within central

banks. This clearly represents a challenge for the central bank in period t, as it does not

see the shocks affecting output and inflation at the horizon it can actually affect these

variables: ut+1, et+1, et+2 are unknown in period t.1

The policymaker, however is not helpless, as information about “where”the economy

is today, reveals relevant information about the future. In period t, output and inflation

are given by history, but due to the persistence embedded in equations (1) and (2), their

current values provide information about their future values, which can be affected by

monetary policy.

The metric for optimal policymaking will be the following utility function:

U = Et
∞∑
i=0

βi
[
−λ

2
y2t+i −

1

2
π2t+i

]
, 0 < β < 1, λ > 0. (3)

This aims at representing a mandate under which the central bank should avoid variations

in inflation (from an inflation goal normalized to zero), as well as variations in output.

The parameter λ represents the relative weight attached to the latter objective. Note

that the steady state of the model (since it is formulated in logs without constants, and

with mean-zero shocks) will feature yss = πss = 0. Hence, we can interpret yss = 0 as

the constant natural rate of output. Note that (3) penalizes deviations of log of output

from zero; hence, there is no preference for output higher than the natural rate as in the

Barro and Gordon-type models. As a consequence, the model will not feature an inflation

bias, or other issues related to credibility. The focus is exclusively on optimal stabilization

policy.

2.1 Stability analysis under an exogenous nominal interest rate

Before proceeding to the derivation of optimal policy, it is relevant to assess the model’s

stability properties for an exogenous nominal interest rate. For this purpose, the model

is written in matrix form– a method which will be useful later also. To obtain a compact

representation, it is convenient to note that by (2),

Etπt+1 = πt + κyt. (4)

Period-t expected inflation is a linear combination of the two predetermined variables yt
and πt, making it predetermined as well. Given the assumed delays in policymaking, this

1Clearly, by the assumption of white-noise shocks, the informational disadvantage is taken to the
extreme. The central message, however, applies with persistent shocks: There will be innovations to the
processes, which are not known at the time of policy implementation.
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makes sense, as policy in period t cannot affect inflation one period ahead. Consequently,

Etπt+1 is exogenous from the perspective of period t. Inserting (4) into (1) yields

yt+1 =
(
θ + σ−1κ

)
yt + σ−1πt − σ−1it + ut+1. (5)

Equations (2) and (5) provide the dynamics of output and inflation, which in matrix

form becomes: [
yt+1
πt+1

]
= A

[
yt
πt

]
+Bit +

[
ut+1
et+1

]
, (6)

where

A ≡
[
θ + σ−1κ σ−1

κ 1

]
, B ≡

[
−σ−1

0

]
.

The dynamic system (6) has two predetermined state variables, yt and πt. When the

nominal interest is considered exogenous, a unique non-explosive solution to the system

exists if matrix A has two stable eigenvalues (or, characteristic roots). In other words, the

eigenvalues should both be within the unit circle. On this, and requirements for stability

in linear dynamics systems under rational expectations in general, the classical reference

is Blanchard and Kahn (1980).

We can find the eigenvalues of A as the values of µ solving∣∣∣∣ θ + σ−1κ− µ σ−1

κ 1− µ

∣∣∣∣ = 0.

The left-hand side determinant provides a second-order characteristic polynomial in µ:

p (µ) = µ2 + a1µ+ a0,

with

a1 = −
(
1 + θ + σ−1κ

)
, a0 = θ. (7)

This can be evaluated explicitly at p (µ) = 0, and one can then examine the solutions to

µ in detail. A simpler route, however, is to use a theorem by LaSalle (1986), as presented

by Bullard and Mitra (2002), which states that a matrix A has both eigenvalues inside

the unit circle if and only if

|a0| < 1, (8)

|a1| < 1 + a0, (9)

both holds. Condition (8) holds as 0 < θ < 1. Condition (9), on the other hand, becomes

σ−1κ < 0 which does not hold.

For an exogenous path of the interest rate, the model is therefore not stable. The

intuition is that if a shock increases output or inflation, this will lead to higher inflation

in the next period. And the real interest rate will, in absence of any response from the
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nominal interest rate, fall, which causes further stimulus to output and eventually inflation.

The economy will be on an explosive path.

The aim of optimal policymaking is therefore both to secure stability (stationarity)

and to provide the appropriate stabilization of output and inflation. We now turn to the

derivation of optimal interest-rate policy.

3 Optimal policy

We will adopt dynamic programming techniques to derive the optimal interest rate rule.

For this purpose it proves appropriate, and convenient, to consider Etπt+1 as the model’s

state variable, and It ≡ σ−1it − θyt the policy instrument.2 With these definitions (1) is
rewritten as

yt+1 = σ−1Etπt+1 − It + ut+1. (10)

Furthermore, (2) is forwarded one period (as πt+1 cannot be affected by it and therefore

It) to πt+2 = πt+1 + κyt+1 + et+2 which can be written in terms of the state as πt+2 =

Etπt+1 + et+1 + κyt+1 + et+2, and eventually as a function of the policy instrument by

inserting (10):

πt+2 =
(
1 + σ−1κ

)
Etπt+1 − κIt + et+1 + κut+1 + et+2. (11)

These equations highlight that a policy contraction in period t (an increase in it and thus

It), reduces output in period t+ 1 and inflation in period t+ 2.

3.1 The value function

To solve the optimization problem, we define the value function V as

V (Etπt+1) ≡ max Ũ ;

i.e., the maximum of

Ũ ≡ β−1
[
U + Et

{
λ

2
y2t +

1

2
π2t +

β

2
π2t+1

}]
, (12)

which is the part of utility that can be influenced by policy. Note that Ũ is utility U from

which the components involving yt, πt, πt+1 are subtracted. This is a valid transformation

as these terms are independent of policy (note also that utility is scaled by β−1 for sake

2One could treat yt and πt as independent state variables and consider it as the policy instrument,
but the solution will be the same. The approach taken here is much simpler (in particular since the value
function will only depend on one state instead of two).
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of simplicity). With Ũ given by (12), the value function is given by

V (Etπt+1) = max Et

{
−λ

2
y2t+1 −

β

2
π2t+2 −

βλ

2
y2t+2 −

β2

2
π2t+3 −

β2λ

2
y2t+3 −

β3

2
π2t+4 − ...

}
= max Et

{
−λ

2
y2t+1 −

β

2
π2t+2 + β

[
−λ

2
y2t+2 −

β

2
π2t+3 −

βλ

2
y2t+3 −

β2

2
π2t+4 − ...

]}
= max Et

{
−λ

2
y2t+1 −

β

2
π2t+2 + βV (Et+1πt+2)

}
(13)

where maximization is with respect to It, and subject to constraints (10) and (11).

3.2 Optimization

By inserting the constraints into the value function, one readily recover the first-order

condition for optimal It:

Et {λyt+1 + κβπt+2 − βκV ′ (Et+1πt+2)} = 0. (14)

We find the partial derivative of the value function (using the envelope theorem) as

V ′ (Etπt+1) = Et
{
−λσ−1yt+1 − β

(
1 + σ−1κ

)
πt+2 + β

(
1 + σ−1κ

)
V ′ (Et+1πt+2)

}
(15)

Forward (15) one period and take period-t expectations to obtain:

EtV ′ (Et+1πt+2) = Et
{
−λσ−1yt+2 − β

(
1 + σ−1κ

)
πt+3 + β

(
1 + σ−1κ

)
V ′ (Et+2πt+3)

}
.

This is inserted back into (14) to eliminate EtV ′ (Et+1πt+2):

Et
{
λyt+1 + κβπt+2 + βκλσ−1yt+2 + β2κ

(
1 + σ−1κ

)
πt+3 − β2κ

(
1 + σ−1κ

)
V ′ (Et+2πt+3)

}
= 0.

(16)

Forwarding the first-order condition one period, and taking period-t expectations, give

Et {λyt+2 + κβπt+3} = βκEt {V ′ (Et+2πt+3)}, which used in (16) gives

Et {λyt+1 + κβπt+2 − βλyt+2} = 0. (17)

This optimality condition can now be combined with the model’s equations in order to

provide a characterization of optimal policy as portrayed by It.

First note that from (5) we find

yt+2 =
(
θ + σ−1κ

)
yt+1 + σ−1πt+1 − σ−1it+1 + ut+2,

and therefore

yt+2 = σ−1κyt+1 + σ−1 (Etπt+1 + et+1)− It+1 + ut+2.

Inserting this, and the expressions for yt+1 and πt+2 [(10) and (11), respectively] into (17),

yield

Et
{
λ
(
σ−1Etπt+1 − It + ut+1

)}
+ Et

{
κβ
[(

1 + σ−1κ
)
Etπt+1 − κIt + et+1 + κut+1 + et+2

]}
= Et

{
βλ
(
σ−1κyt+1 + σ−1 (Etπt+1 + et+1)− It+1 + ut+2

)}
,
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and thus

Et
{
λ
[
1− βσ−1κ

] (
σ−1Etπt+1 − It + ut+1

)}
+κβEt

{[(
1 + σ−1κ

)
Etπt+1 − κIt + et+1 + κut+1 + et+2

]}
= βλEt

{
σ−1 (Etπt+1 + et+1)− It+1 + ut+2

}
.

With the simple assumptions about shocks, this reduces to

λ
[
1− βσ−1κ

] (
σ−1Etπt+1 − It

)
+ κβ

(
1 + σ−1κ

)
Etπt+1 − βκ2It

= βλ
{
σ−1Etπt+1 − EtIt+1

}
,

which can be written as a first-order rational-expectations difference equation in It:

It =

(
1 +

β (κσ − λ)

Ψ

)
σ−1Etπt+1 +

βλ

Ψ
EtIt+1, (18)

with

Ψ ≡ λ
[
1− βσ−1κ

]
+ βκ2.

We will assume throughout that σ−1κ < 1, such that Ψ > 0 always holds. As we in our

calibrations later on use the empirically plausible values κ = 0.1 and σ = 2, it should be

clear that this is not a restrictive assumption.

In order to solve (18), we use the method of undetermined coeffi cients, and conjecture

that the policy instrument It is a linear function of the state variable:

It = φσ−1Etπt+1. (19)

Under this conjecture, EtIt+1 = φσ−1Etπt+2 = φσ−1 [(1 + σ−1κ)Etπt+1 − κIt], and there-
fore

EtIt+1 = φσ−1
[(

1 + σ−1κ
)
− κφσ−1

]
Etπt+1. (20)

Inserting (19) and (20) into the difference equation (18) yields:

φσ−1Etπt+1 =

(
1 +

β (κσ − λ)

Ψ

)
σ−1Etπt+1 +

βλ

Ψ

[
φσ−1

(
1 + σ−1κ

)
− κφ2σ−2

]
Etπt+1.

This verifies the form of the conjecture (19), and identifies the unknown policy-rule coef-

ficient as the solution to

φ = 1 +
β (κσ − λ)

Ψ
+
βλ

Ψ

[
φ
(
1 + σ−1κ

)
− κφ2σ−1

]
,

which is a second-order polynomial in φ:

βλκσ−1φ2 +
(
Ψ− βλ

(
1 + σ−1κ

))
φ− (Ψ + β (κσ − λ)) = 0. (21)

The solutions to (21) are

φ =
− (Ψ− βλ (1 + σ−1κ))±

√
(Ψ− βλ (1 + σ−1κ))2 + 4βλκσ−1 (Ψ + β (κσ − λ))

2βλκσ−1
.

(22)

To assess whether the high or low solution of φ is relevant, we first assess stability of the

model for any value of φ.
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3.3 Stability analysis under the policy rule for any φ

With It = φσ−1Etπt+1, we have that σ−1it − θyt = φσ−1Etπt+1 = φσ−1 (πt + κyt) and

therefore

it = σθyt + φEtπt+1. (23)

We can then rewrite the dynamic system in matrix form by using (23) and the fact that

Etπt+1 = πt + κyt, along with (6):[
yt+1
πt+1

]
= A

[
yt
πt

]
+B ([σθ + φκ] yt + φπt) +

[
ut+1
et+1

]
,

or, [
yt+1
πt+1

]
= A

[
yt
πt

]
+ B̃

[
yt
πt

]
+

[
ut+1
et+1

]
, (24)

B̃ ≡
[
−θ − σ−1φκ −σ−1φ

0 0

]
.

Stability of the system (24) is then secured when the matrix

Ã ≡ A+ B̃ =

[
σ−1κ (1− φ) σ−1 (1− φ)

κ 1

]
has two eigenvalues within the unit circle. The eigenvalues of Ã are the values of µ solving∣∣∣∣ σ−1κ (1− φ)− µ σ−1 (1− φ)

κ 1− µ

∣∣∣∣ = 0.

The left-hand side determinant provides a second-order characteristic polynomial in µ:

p̃ (µ) = µ2 + a1µ+ a0,

with

a1 ≡ −
[
1 + σ−1κ (1− φ)

]
, a0 ≡ 0. (25)

We can then evaluate whether the necessary and suffi cient conditions for two stable roots,

(8) and (9), are satisfied. Condition (8), |a0| < 1, is clearly satisfied whereas condition (9),

when (25) applies, becomes |1 + σ−1κ (1− φ)| < 1. A necessary condition for this to hold

is φ > 1. Hence, the relevant solution to (21) is the large root, as long as this is greater

than one.3 In Appendix A, we show that the large root of (22) indeed is larger than one.

Hence, optimal interest-rate setting in this dynamic economy is it = σθyt + φEtπt+1,

where φ > 1 is given by the larger root of (22).

3The relevance of a root φ > 1 in terms of securing stability can also be seen by inserting It =
σ−1φEtπt+1 into (11), which yields πt+2 =

[
1 + σ−1κ (1− φ)

]
Etπt+1+ et+1+κut+1+ et+2, and therefore

πt+2 =
[
1 + σ−1κ (1− φ)

]
πt+1 − σ−1κ (1− φ) et+1 + κut+1 + et+2. It is evident that stability requires∣∣1 + σ−1κ (1− φ)∣∣ < 1, and thus φ > 1. It also implies that φ cannot be too high, more specifically,

φ < 1 + 2σ/κ must hold as well. For our benchmark calibration mentioned in Footnote 4, this latter
condition is φ < 41, and thus well within what is economically relevant.
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4 Discussion

Several properties of the optimal rule are worth mentioning. It is of the same form of

the policy rule proposed by Taylor (1993), in the sense that the nominal interest rate

responds to output and inflation. Also, as is the case with the Taylor rule, the coeffi cient

on inflation, φ is larger than one. This property is often referred to as the Taylor principle,

and it is central for stability in this type of model economy. A positive shock to inflation

or output will lead to increased inflation and inflation expectations. When the nominal

interest rate raises by more than one-for-one with inflation, the real interest rate increases,

which puts downward pressure on demand, and consequently on inflation. Figures 1 and

2 show the impulse response patterns for the economy following a unit shock to demand

and supply, respectively.4

As evident from the figures, the optimal interest-rate policy plays an active role in

bringing the economy back to steady state after either shock. In the case of a positive shock

to demand, the interest rate is raised immediately to counteract the expansionary and

inflationary effects that are anticipated in the future. As a result, output is undershooting

from period 2 and onwards to dampen the inflationary effects. In the case of an inflationary

supply shock, the nominal interest rate is again increased immediately, but much more

fiercely, as inflation is driven up stronger and more persistently in comparison with a

demand shock.

While the optimal rule shares qualitative features with the original Taylor rule, it differs

in quantitative respects. Since the coeffi cients on output and inflation in the optimal rule

are functions of the deep parameters of the model, their values can differ vastly from those

in Taylor’s rule. The original Taylor rule is in this notation given by

it = 0.5yt + 1.5πt,

whereas the optimal rule under the benchmark calibration (see Footnote 4) is given by

it = 1.0yt + 3.5Etπt+1, which by use of (4) yields

it = 1.35yt + 3.5πt

Hence, a stronger response to both output and inflation is envisaged by the optimal rule

for this calibration of the model. Many have estimated policy rules of the Taylor type

for the Federal Reserve and the ECB, inter alia, and some find Taylor-rule-type behavior

in data, while some do not (see, Cochrane, 2011, for recent discussions on Taylor-rule

estimations, and Jensen and Aastrup, 2010, for examples of estimations on Euro-area

data). Irrespective of what is exactly found empirically, it is a common finding that

predictions from calibrations call for stronger policy reactions under optimal policy than

4These simulations are made with a benchmark parameterization with σ = 2, κ = 0.1, β = 0.99,
θ = 0.5, and λ = 0.5.
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Figure 1: Impulse responses following a demand shock, u1 = 1

Figure 2: Impulse reponses following a supply shock, e1 = 1
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Figure 3: Optimal policy-rule coeffi cient and preferences

what is found in data. This could reflect a caution in real-life policymaking that the

optimization exercise does not take into account.

Despite the high absolute values of the optimal coeffi cients, it is a general insight

that the magnitudes need not reflect anything about the central bank’s relative preference

for output versus inflation stability. A relatively high weight on output, e.g., does not

necessarily reflect a high preference for output stability, but could either be due to a high

value of θ or a high value of σ. In either case, it will mean that the interest rate will have

to be adjusted stronger to obtain the same effect on next period’s output. The relative

preference for output stability, however, does affect the value of the inflation coeffi cient–

and in the expected direction. The higher is λ, the lower is φ, which is illustrated in

Figure 3 where λ varies between 0.1 and 10 (with the remainder parameters equal to the

benchmark calibration). This results in a variation in φ between 6 and 1.5.

In conclusion, observing different policy-rule parameters across countries does not nec-

essarily reflect differences in preferences. It could, but it can also reflect different structural

characteristics, which necessitate different interest-rate responses to fulfill identical objec-

tives. It is in any case noteworthy that under optimal policymaking, the central bank

responds to output even though is hardly cares about output stability. The reason is that

with the assumed delays in policymaking, observed changes in output are relevant indi-

cators for future inflation developments. Hence, the model under optimal policymaking
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provides an example of output being an intermediate target for a strongly anti-inflationary

central bank.

5 Application: Inflation targeting

Inflation targeting is a monetary policy regime which differs very much in set-up across the

countries who have adopted it. One thing is common though, namely the specification of

some numerical target value (or target range) for the inflation rate, and some specification

of the horizon at which the central bank intends to attain the target. In one of the first

theoretical contributions, Svensson (1997) used a variant of the model of this note, to flesh

out some central policy properties of inflation targeting under the two “variants”it can be

viewed. Svensson (2010) contains an updated survey of the inflation-targeting literature.

5.1 “Strict” inflation targeting

Under “strict” inflation targeting, the central bank has the inflation target as the over-

riding objective for monetary policy. This will in context of this model correspond to the

case of λ = 0. While many inflation-targeting countries indeed consider inflation stability

as a top priority, several have caveats in their legal frameworks that allow some focus on

output stabilization– as long as it does not interfere with the price stability objective.

Nevertheless, the “strict” inflation target has a couple of clear implications. Assuming

optimal policymaking, the optimality condition (17), often labelled a “targeting rule”in

the inflation-targeting literature, will become:

Et {πt+2} = 0. (26)

In words, the central bank engages in inflation forecast targeting. By this is meant that

it sets the interest rate such that the inflation rate at the horizon controllable by policy

(here, two periods) is expected to be on target (here normalized to zero).

This leads to simple implications for policy implementation as well as policy evaluation.

Concerning policy implementation a simple guideline would be that if the inflation forecast

is over (under) target for an unchanged interest rate, then the central bank should raise

(lower) the nominal interest rate. The precise interest rate rule can under strict inflation

targeting be derived from (11):

Etπt+2 =
(
1 + σ−1κ

)
Etπt+1 − κIt

=
(
1 + σ−1κ

)
(πt + κyt)− κ

(
σ−1it − θyt

)
,

where it is seen how changes in expected inflation two-periods ahead (caused by, e.g.,

changes in yt or πt) must be met by interest rate changes as explained above. Note that

Etπt+2 = 0 is attained when

i =
(

1 +
σ

κ

)
πt + (κ+ σ + σθ) yt.
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Figure 4: Stochastic simulation of actual inflation under “strict”(zero-) inflation targeting

In terms of evaluation of policy performance, the “strict”inflation targeting framework

emphasizes clearly that one cannot judge the success of policy on the behavior of inflation.

With the (realistic) delays in policy impact, shocks constantly bring inflation away from

target. This is unavoidable even for an optimizing central bank only focusing on inflation

stability. Figure 4 illustrates this. It shows a sample path for inflation in a simulation

of the model under “strict” inflation targeting, where the demand and supply shocks in

each period are drawn from independent N (0, 1) distributions. It is seen that inflation

fluctuates quite substantially, even though the central bank is doing the best possible job.

Hence, an inflation targeting bank should not be judged on actual inflation, but on its

ability to get the inflation forecast at the target value at the relevant horizon.

5.2 “Flexible” inflation targeting

Under “flexible” inflation targeting, λ > 0, and the central bank explicitly takes notice

of output volatility. The main difference with this more realistic scenario and “strict”

inflation targeting, is that the size of λ will affect the horizon at which the bank expects

to have its inflation forecast match the target. We saw in Figure 3 that a higher λ resulted

in a lower φ, and in Footnote 3 we saw that the equilibrium process for inflation is given

by

πt+2 =
[
1 + σ−1κ (1− φ)

]
πt+1 − σ−1κ (1− φ) et+1 + κut+1 + et+2,

which is more persistent with the lower is φ. Hence, the inflation target will be reached

later, the larger is λ. Central banks allowing longer horizons for the target to be met, can
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therefore be interpreted as central banks with relative high values of λ.

A Proof that the high root of (22) is larger than one

We start by rewriting (22) as

φ =
− (Ψ− βλ (1 + σ−1κ))

2βλκσ−1

±

√
Ψ2 + β2λ2 (1 + σ−1κ)2 − 2Ψβλ (1 + σ−1κ) + 4βλκσ−1 (Ψ + β (κσ − λ))

2βλκσ−1
,

and thus

φ =
− (Ψ− βλ (1 + σ−1κ))

2βλκσ−1

±

√
Ψ2 + β2λ2 (1 + σ−1κ)2 − 2Ψβλ+ 2βλκσ−1Ψ + 4βλκσ−1β (κσ − λ)

2βλκσ−1
.

The large root is larger than one if

− (Ψ− βλ (1 + σ−1κ)) +
√

Ψ2 + β2λ2 (1 + σ−1κ)2 − 2Ψβλ+ 2βλκσ−1Ψ + 4βλκσ−1β (κσ − λ)

2βλκσ−1

> 1,

or

−
(
Ψ− βλ

(
1 + σ−1κ

))
+

√
Ψ2 + β2λ2 (1 + σ−1κ)2 − 2Ψβλ+ 2βλκσ−1Ψ + 4βλκσ−1β (κσ − λ)

> 2βλκσ−1.

This inequality is equivalent to√
Ψ2 + β2λ2 (1 + σ−1κ)2 − 2Ψβλ+ 2βλκσ−1Ψ + 4βλκσ−1β (κσ − λ)

> 2βλκσ−1 +
(
Ψ− βλ

(
1 + σ−1κ

))
,

Ψ2 + β2λ2
(
1 + σ−1κ

)2 − 2Ψβλ+ 2βλκσ−1Ψ + 4βλκσ−1β (κσ − λ)

>
[
2βλκσ−1 +

(
Ψ− βλ

(
1 + σ−1κ

))]2
,

Ψ2 + β2λ2
(
1 + σ−1κ

)2 − 2Ψβλ+ 2βλκσ−1Ψ + 4βλκσ−1β (κσ − λ)

> 4β2λ2κ2σ−2 +
(
Ψ− βλ

(
1 + σ−1κ

))2
+ 4βλκσ−1

(
Ψ− βλ

(
1 + σ−1κ

))
,
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Ψ2 + β2λ2
(
1 + σ−1κ

)2 − 2Ψβλ+ 2βλκσ−1Ψ + 4βλκσ−1β (κσ − λ)

> 4β2λ2κ2σ−2 + Ψ2 + β2λ2
(
1 + σ−1κ

)2 − 2Ψβλ
(
1 + σ−1κ

)
+ 4βλκσ−1

(
Ψ− βλ

(
1 + σ−1κ

))
,

−2Ψβλ+ 2βλκσ−1Ψ + 4βλκσ−1β (κσ − λ)

> 4β2λ2κ2σ−2 − 2Ψβλ
(
1 + σ−1κ

)
+ 4βλκσ−1

(
Ψ− βλ

(
1 + σ−1κ

))
,

4βλκσ−1Ψ + 4βλκσ−1β (κσ − λ) > 4β2λ2κ2σ−2 + 4βλκσ−1
(
Ψ− βλ

(
1 + σ−1κ

))
,

βλκσ−1β (κσ − λ) > β2λ2κ2σ−2 − βλκσ−1βλ
(
1 + σ−1κ

)
,

κσ − λ > λκσ−1 − λ
(
1 + σ−1κ

)
,

and finally

κσ > 0.

This always holds. Hence, for the high root φ, it follows that φ > 1.
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