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A Derivation of Vi (G) = v, (Y7, 2)

Setting the derivative of equation (20) with respect to G to zero, we have:
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Using (15), (16), (8) and (17) we have that Tyv, (Y, 21) = v, (Y], 2F), for all s > ¢.

Hence, the above expression becomes:
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which is equal to

;ﬁ”{[ (CH ety =, (<2 S+

s—t F _F —-n F _F aCF
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where in the final step we have used again (15) and (16). Hence,
Ve (G =, (Y7, 2]7) .
Similarly, the first-order condition for Foreign public spending reduces to:

Vo (GF) = v, (Y, 20) -

B Government spending not in utility

B.1 Government spending neither in Home nor in Foreign util-
ity

Government spending does not provide utility to the Home and Foreign individuals.

Hence, the coordinating fiscal authorities now maximize

N n U (CH, el v 2
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s=t
over G and GI' subject to (15), (16) and (17) and subject to the restriction that the
steady state values G" and G" of, respectively, G¥ and GI fulfill " = @é{ > 0 and
G = @5 > (. For these given steady state values for public spending the best that the
authority now can do to maximize welfare is to completely eliminate any fluctuations in

the marginal disutility of effort as a result of shocks. Hence, for all ¢,
Uy (Y;H7 H) = Uy (757 0) )
Uy (YtF> F) = Uy (7570) ,

where 75 = Té‘"@o + @é{ and 75 = T,"Co + @5 , where Cy and T are the steady

state outcomes for consumption and terms of trade when the restrictions are imposed
—H  —=H —F  —=F . .. o .

that G = G, and G = G,,. Log-linearizing the above conditions around this steady

state, we obtain YH SH and YF SE which can be rewritten as, respectively,

G = = s -e (0= T+ a)],
1

GF = e [sr-e(aTirar)).
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Hence,
- 1 -
R R
Substitute this into (48), and solve to give T, = 0.
To show that all gaps can be closed at all dates when government spending does not
feature in the utility functions of the individuals, observe that, if 7}V = 0 at all dates (to be
confirmed), the monetary authority closes the consumption gap by (committing to) setting

R, = Ry, for all t > 1. From (30) and (31), with G — Gff = —(11€(on) (ﬁ - :7})

@f —GF = (é(’;"_i);” (TA} - YN}) and a closed consumption gap for all ¢ > 1, national inflation

rates, and thus 77 and 71}", are zero for all t > 1. From (32) we see that, with the natural

terms of trade equal to zero for all ¢ > 1, the starting condition To = 0, and 72 = 0 for
all t > 1, the terms-of-trade gap is zero for all ¢ > 1. Hence, in equilibrium, all gaps are
closed and national inflation rates are zero for all ¢ > 1, and, hence, there are no policy
trade offs.

B.2 Government spending in only one country’s utility

When only the Home — say — individuals experience utility from public spending, the

coordinating fiscal authorities maximize

s U (CH ) +V (GH) —v (YH, 211)] }
E s—t [ s s 1%s 7
2 e e o
over G and GI' subject to (15), (16) and (17) and subject to the restriction that the
steady state G of GI fulfills G = éoF > 0. Going through the steps of Additional

Appendix A, and using the above arguments, we end up with the following conditions:

s=t

VG (GH) = Uy (Y;Hazg{)>
o (V) = 0 (V5,0).

Log-linearizing these two conditions yields:

ar = W?l_g)[sf—fc(a—n)ﬁmfv)],
Gf = 1—5 [SF 5(_”ﬁ+étw)}‘

These need to be combined with (47) and (48), to yield a four-equation system that
is solved for éf’ , éf , @W and T;. We now show that the solution of this system is
incompatible with 7}, = 0 for all possible shock realizations. By (48), to produce T} = 0,
requires that GF = S/ (1 — £,). From the above expressions for G¥ and GF, we obtain

a second expression (using 7; = 0):
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Choosing SI' = n(l-&) SH and working out the term between square brackets, we
pg + n (1 - gc)
obtain:
gcpg 5W

Gt :_[pg+n(1_§c)] (1_50) .

Combining this with

1
1_50

Pq

we obtain

ClYV =s1e.

From the above expressions for éf’ and éf , we also obtain (using T, = 0):
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Substitute this, along with the expression

! o +(1 n)pg+7](1_£c) ' Pg+77(1_5c) b

into (47), where, taking the case of D}" = 0, we get:

~W Ui npg+77(1_§c) H (1_n)pg H
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n H
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which differs from the earlier expression for @W .
Hence, given that T} can differ from zero, we are in the case covered by Proposition 1

and it is impossible to close all gaps.
C Relevance of demand shocks for natural terms of

trade under international market incompleteness

As before, log-linearizing (15) and (16) around the steady state, we obtain again (45) and

(46). However, subtracting the latter from the former, we can no longer use the relation



CH 4+ DH = CF + DF [which was obtained by linearizing (8) — however, this expression

no longer holds under internationally incomplete markets]. Hence, we obtain:
p(CF+DF) =T, (14 &) — (1 - &) Gff + nSP.

Hence,

Tt:

T o (CF+DF) +9(1-€) Gl —nsf|.

Under internationally complete markets the term @R + Dff would be zero. With interna-

tional incompleteness this is no longer the case in general.

D Derivation of the microfounded loss function

Here, we derive the utility-based loss function. The average utility flow of the households

belonging to countries H and F' respectively is:
1 n
wll = U (Cuel!) +V (G = [ o ) =) i,
0

where €/ is the vector of Home preference shocks, and

1 1
wf:U(Ct;et)jLV(GF)—T v (e (f),2)df.
The welfare criterion of the authorities (the common central bank and the coordinating

fiscal authorities) is
EZBtl nw + (1 —n)w/].

We start by making computations for Home. The computations for Foreign are analo-
gous and, therefore, not shown explicitly. After this, we combine the expressions for Home
and Foreign to obtain WW. We denote the full vector of shocks by &.

D.1 Working out the terms U (C/;¢f'), V (Gf') and v (y: (h); /)
D.1.1 The term U (C;¢ff)

Take a second-order expansion of U (C’tH ;€ ) around the steady-state value (6; 0):

U(Cliel') = U(@;o)+UC(CH_6)+%UCC(CH_5)2

+Ue€f+ ( ) Ueeet +UC€€t (CH U)+O(||§||3),

where O (||€ Hg) stands for terms of third or higher order (all variables are in equilibrium
functions of the shock-vector, which exhibits bounded fluctuations of order [|£]|). Note

that a second-order log-expansion of C around C yields:
— ~ 1 /~\2
¢, =T {1 + ' +5 (&) } +0 (¢l .
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where @H =1In (C /6) Substitute the preceding expression into the above expression for
U (CH; €f) to give:

_ I~ N2 o /a2
U(C’tH;ef) = U(C;0)+UCC {C’tHjL%(CtH) ] —i—%UCCC (CtH)

+Ueet’ + 1 (') Ueeet' + UcCe' Cf + O (JI€I1°) .

and thus
H. H __AH 1 (A 1 =2 (A ~_HAH . 3
U(CH e = UC & +§(q ) } +1UeeC (q) + UeCelCH +tip. + O (||,
H. H\ _ pal H ~H lUCCC m)? UCEH H 3
U(Ciie') = UCC_C (Ct) +3 0 (C ) +Uc C, ]thlp +O (€11,
U(Cley = UT|C ) (C ) Yo HC'H]—H;lp +O(JElP)

where, as in the main text, p = —Uge (5; 0) C/Ug (U; O), and where “t.i.p.” stands for
“terms independent of policy.” We can then, following the linearization of the first-order

conditions, define D; through the relationship:
UCe (6, 0) Ef = GUCC (6, 0) DtH
This implies that Ucce! /Uq is given by —pDH | and we therefore finally get

|~ ~ 2 ~
U (CF: ") = UeT {cgu%a_ PIGHE ppgfcgf]+t.i.p.+o(”gu3). (A1)

D.1.2 The term V (Gf)

We approximate in an analogous way V' (Gf ) This yields:
H =lAan 1 A2 : 3
V(GH) = VG [Gt w2y, (@ } Ftip 1O ().
where, in accordance with the main text, p, = —Vse (@) G/Vg (@) Using that Vg (@) =
Uc (6; 0), we can write:

V(GH) = UT {@{f +5(1-n,) (65)2] tip. O (Iel). (A.2)

D.1.3 The term v (yt (h); Z{{)

Similarly, we take a second-order Taylor expansion of v (yt (h); 22 ) around a steady state
where y; (h) =Y for each h and at each date t, and where 2z = 0 at each date t. We

obtain:

v (yt (h); th) = v (7' 0) + v, (y (h) —?) + vzth + %vyy (yt (h) —7)2

ozt (g () = V) + 5 (o) vzl + O (IEI°) -
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Then note that a second-order logarithmic expansion of y; (h) gives:
v () =Y [L 4+ () + 55 ()] + O (I€]°) -

Using this expression, we simplify

o (o0 (1) 201) = vy () + Gy (e () = V)% vyl (B) + g + O (J€])

to
" — [ 1. 9 1vyy7A 2 Uyz p~ . 3
vy (h);2") = wY |G () + 58 (R)” + 5 == (h)" + ~ =25 (B) | + tdp. + O (<)
Yy Y
or
X, |~ 1+ ~ UZ A~ .
o o (0):2) =0 [ 0+ 20 (0 + 22505, ()| + e+ O (1€l
Y

where, as in the main text, n = vy, (7, 0) Y /v, (7, 0). Then, using the definition of S},
UyzZtH = _?UnytH ’

we finally arrive at

50+ 515 (0F = 0I5 1) + i+ O (1€l).

v (v (h);2f') =0,V

We have that Ug (6; 0) =y (7; 0). Hence, using this, we can write:

147

v(ye(h)sz') =UcY [ﬂt (h) + G (B)* =S/, (h)} +tip 4+ O ([E]°) -

This last expression is integrated over the Home population (of size n), i.e., we find

%/Onv(yt(h);zt[{)dh

= UcY (Bngi (h) + 52 [Vangi () + [Eag ()] = 0SB (1) + tip. + O (lIE]°) -
We then take a second-order log-expansion of the aggregator Y, to obtain:

VT = B (h) + 122 Van,g; (h) + O (JI€]1)

(e

Insert the implied value for E,y; (h) into the previous expression:

A~

[ ~ 2 —~
= UY (ytH — 1=1Var, g, (h) + 122 {Varh@ (h) + (YtH) ] —nSH Yﬁ) +tip. + O (J|¢)f)

o~

— |~ ~\ 2 ~
- UCY[ H B (V) — 4=t -1 Varhﬂt(h)—nStHY;H] +tip.+ O ([]°)

2 ~
H) + 1 [o7" + 0] Var,g, (h) — nStHY;Hl +tip.+ O (HSHP’) .



D.2 Combining the expressions

Combining (A.1), (A.2) and the previous expression, the relevant welfare criterion is
H =l L ST HA~H
wy = UcC|Cy +§(1_P) (Ct ) — pD; G
[~ 1 N2
+UG {Gf +5(1-p,) (GI) }
2
[~ o\ 2 ~
—UsY {Yﬁ + 52 (V) 4 [0t 4] Vangi () - nSfTH
+tip. + O (|€]).
Using £, = C/Y (as in the main text) we then get:
([~ 1 o\ 2 .
wf = UCO{ {C{f +50-p) (CF) - prfCtH]
1 =& |am 1 A\ ?
e [Gt +1-n) (67 ]

1 [~ N2 R ~
- — {YtH + L (YtH) + 1 [o7" + ] Var,g;, (h) — nStHY;Hl }

€e
+t.ip. + O (J|€]) -

For Foreign, we have:

1
2
~ ~ 2 ~
- L [rre s () ot ol Va9 asf 5 |
+t.ip. + O (J|€]f) -

Now, take a weighted average of wi! and w! with weights n and 1 — n, respectively:
=) | Aw A\ 2 W AW
w, = UCOHQ +i(1-p) (q ) — pDV ! ]
- 50 ~ ~i\ 2 A\ 2
+T {va—i- 5 (1—p,) (n (Gf) +(1—n) (Gf) )}
vW o 14n VAR or)
Ll s (n(BE) - (VF) ) +
¢, | 3lo™t +nl[nVarngi (h) + (1 — n) Var,g, ()]
—nSHVH — (1= n) SFYF
+t.ip. + O (J|€]f) - (A.3)



Here, we have used that:
~ 2 —~ 2
n(C’tH) + (1 —n) (C’tF) =
~ 2 ~ 2
- n(oyw,yv_pf) +(1—n) wa:V_Df)
- {(@W)Q 2 (DY — pH) QW] L (1=n) {(@W)Q T 2(DY — DF) QW] T tip.

= <ay)2+t.i.p.

—npD{'C/' = (1= n) pDf Cf
— —npDH (@WJFDtW—DtH) — (1 —n) pDF (@WJFDtW—Df)
— —npDICY — (1 —n) pDFCY + t.ip.
= —pDXV@W%—t.i.p.

D.2.1 Expansion of }Aft
Before continuing, we expand Y. Define the function W (V1) = YH = In (YY),

Taking a second-order approximation:

V= W)+ W (V) (V) + %W” (V) (7" =¥) + O (IElF)

YA VN 1/YH-V\? X
- 0+ (F5) -3 () o)

B Tl nCW—l—GH (Tl nC—l—G) 1 Tl nCW—i—GH (Tl nC—l—G) O 5
Tl nCW Tl nC GH 1 Tl nCW Tl nC GH G 2 3
_ E e + 2] o).

Now define Z (T3, C}V') = T, "C}". Taking a second-order Taylor expansion of Z (T3, C}")
around the point (T,?) gives:

Z(1, ) = Z(T,C)+ Zr (T, - T) + £ Zrr (Tt—T)2+ZC (¢ -0)
+1Zcc (CF — 6)2 + Zre (I, = T) (C)Y = C)+ O (||§||3)
— T""C+(1-n)T "C(T,-T) - —n)nT "0 (1, -T)
T (VN -0)+ (1 -n)T " (L, -T) () = T) + O (lel*)

— =\ 2
- T "C+(1-n)T c( — )—%(1—n)nT1 c(tT )

4T (J(CWC C) LT C(TtT ) <CW6 C) Lo(lelP).




Hence,

Y
= (d-n)& (Tt%T) — 3 (1—n)ng, (Tt%T)Q
w6, (B 7) +u-me (BT (F57) o)

Substitute into this expression:
w ~ AW 1 AW 2 3
cy = c(1+ct +5 (@ )+o(||§|| ),
_ ~ 1~
1= 7 (14T 57) + 0 ().
so that the right-hand side becomes:
~ —~ ~ ~\ 2
(L =n)& (Ti+3T2) = (1 = m)ne, (T +372)
~ ~ 2 —~ —~ —~ —~ 2
re (@ (@) +a-me (Faam) (@1 (@) +o (i)
= (1= +0Y +3(1—n)e 17
~ ~ 2 ~ o~
~3 (=g TP+ 46 (CF) + (1= m) & L0 + 0 (J¢)”)
~ o~ -~ o~ 2 ~
= (-m&T+6CY +30-n? T+ 16 (CF) + (1 -n)&TEY + 0 (J¢l?).
In addition using that
_ ~ 1/~ 2
6 = (1G5 (G)) w0 ().
we can write:

v -Y oV —-1"C  GH - @
— = — + —
Y Y Y

~ ~ ~ —~ 2 o~ o~
= ¢, {(1—n)7}+0fv+§(1—n)27;2+§ (th> + (1 —n)T,CV

=g |6 (@) o (er).
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Hence:

()
Y

= & [(1—n)ﬁ+5y+%(1—n)2ﬁ2+

%,(1-¢) [(1—n>ﬁ+éﬁ+%<1—n>2:ff

IR (@5)2]2 + 0 (|el®)
= é[@—nﬁfQ
2, (1) (1~

455

[1—n>:n+c] +(1-&)GF + 10

n) T,GI +2¢, (1

Hence,

L

¢ (1 5)(1—n)TthI—§c(

or

N2 P ks
%(ctW) +(1—n)thtW] +

+%(6§V)2+(1—n)ﬁafv} {@ff*%(@fﬂ

+(C) 20 - T + -6 (6r) +
—&)CVGE+ o (€.

e+ (OF) + (- m) e RON +
(1-¢) (G — 4 (1 —n* T2 - 3 (C) -

(1 -mETaY ~ 50 -6) (Gl) -

—&)CV G+ o (€l .

N YA -Y 1 /YH-Y
- () -5 (M5 o

= e (A=-mT+CY)+ (- )Gl
Um0 -e) T a0 -6) (EF)

—€,(1-&)CVGE+ 0 (IE]®).

se.(1-¢) (@)
n) TG

In a similar way we derive the corresponding expression for the foreign country:

yF — YtF_? _1 Y;:F_?
' Y 2\ Y

= [£C (—nﬁ +C7W) + (
3% (1= ) TF +

—¢
—né, (1 €)TtCW+§( — €,
—£,(1-&)CVGE+ 0 ([€lP) -
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D.2.2 Continuation of approximation

To further work out the approximation of the welfare loss function, it is useful to obtain

some expressions, before actually making the substitutions. We have, using the above

expressions:
P = (6O + (1 -€) G| + In(1—n)& (1 - &) T
1 o AW A 2 . ~W _ AF 2
+2€c(1 £.) n<Ct Gt) + (1 —n) (Ct Gt)
+6, (1= E)n (L =n) TG + 0 (JEF).
Further,
N2 A 2
(1) = [e(a-mT+C") +a-c) G| +0(lel).
<\ 2 oA ~p12 5
(V) = |e(-nTi+C") + (1= G| +O(Iel®).
Hence,

() 0 ()
= w2 [1-n T+ O] + 0 -n& [T+ O]
+2ng, (1= ) [(1=m) T+ | G +2(1-m) 6. (1-&) |-nTi+ CF| GF
- (@) +a-ma-e? (@) o)
— g {(1 — )2 T2+ 2(1—n) TCY + (@Wﬂ +(1—n)& [nQﬁQ —omT,C) + (@Wﬂ
26, (1= &) [ OV G —n (1 —n) TGF|
(- (@) +a-m - () +0 (e,
Hence,
() 0 (7
= (- @R+ & (CF) e, (1-£) [GFEY —n( - n) TG
#1=e)* 0 () 4 - (&F)'] + o e
= n(1-n) T} — 26, (1-&)n(1-n) TG +
nje (@) v -earar - a-er (6]

(- [& (@) v -G+ - (6F) | + 0 1er).
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Further,

Hence,

ST = s e (A=mT+C )+ (1-€) G + 0 (I¢)).
SEVE = SP[e (—nTi+CF) + (=€) GF | + O (lel®).

n[nSEV 4 (1= n) ST
st [e, (L=m) T+ 8 ) + (1 - ) GF|
(1 =n)Sf [ (=0T +CV) + (1= €) GF | + O (IelP)

—n€, (1= n)nT,SF +ng.ClV S}Y
(1= &) [nSEGH + (1= ) SEGE] + 0 (IEIP)

We can now start to make substitutions into (A.3). First, substitute the expression for

}A/;W and observe that the linear terms cancel. Thus, we have:

H - (C) - pper o 8 (=) [n (@) 0w (@)

— 56 A — 52 [nVary i (k) + (1 — n) VargGi (f)] + t.ip. + O ([€]°) . (A4)

= n(1-n)& =) TP +2n(1—n) (1 - &) TGF
re1-co o (@ - e a-m (@ - cr)]
+(LEmn (L —n) &L —2(L+n)é (1—&)n(l—n) TAf
Fnn e (CF) 20 -Gl + - e* (6F)]
) =) € (C) 20— ) EF G + - )R (7))

—2n [nStH}A/;H +(1—mn) StF}A/tF} .
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Substitute this back into (A.4), to give:

e = 4= (CF) = D CY g (1= ) (GF) —ni (O - )’
+(1-n) 5 (1-p,) (@f‘) —(1-n)k (cW GF)
iz [ (aw) -2 (e) rasa-c)crar]
(- e (Er) s - A+ - (6F)]
—5n(1=n) (1 =&) T —n(1—n) (1 - &) TGF
L= m)ET 4+ (L) (- E)n (1 —n) TGP
S [nstHyH +(1—n) sFyF}
— 56 222 [nVaryy (h) + (1 = n) VargG; ()] + tip. + O (¢[°) .
Hence
= Al & )] (GF) nlgE L, - (1) )] (GF)
P 8 L p,— 1 —&) ) (GF)
(L) (1= €) I GY — 'l (CF = GI) - (1 m) 5 (O - BF)
—3n(1—n) (1+06) T+ (1 —n) (1 - &) TLGF
+2 [nsH?H +(1—n) Sf?f} — pDV W
- B [0 Var, G, (h) + (1 — ) Vargg, ()] + tip. + O (J€])
Hence,
e = b 0] (CF) g [y = (- g) )] (GF)

P RS g, - 1 -&) )] (EF)

~n) (1) EFEY i (G ) ) i (O - ar)
—in(1=n) (1 +n€) T +mn (1 —n) (1 - &) TG
— (D" = nS) O = (1= m)nTiSf + 2 (1- &) [nSFCH + (1= n) ST G|

3t 22 [nVaryi (h) + (1 — ) VargGi (f)] + tip. + O (J€]f)

14



Hence,

e = e (OF) +ha- e (OF)
b (p, +0) (G) +nd (- ) (1) (GF)

—-m) 5 (o, ) (GF) + (1 -m) b (- &) () (GF)
—<1+n><1—£c>cXVG¥V—n1‘TfC (@ —am) —a-mte @y -ar)
—3n(L=n) (L+9E) T+ (1 —n) (1 - &) TGF
— (D = nS) CF =0 (1= m)nDSf 4 2 (1= &) [nS{IGH + (1 n) SFGY |
— 56 72 [nVary i (h) + (1 — n) Vargg, (f)] + tip. + O (J¢[°) .

Hence,
e = 2o+ (GF) +nb(-&)(tm) (CF - GF) — i (O - alF)
+(1-m)3(1-€)(1+7) (@W—éf) <1—n>1—(cW ar)

T (py+n) (GF) = (1= m) 55 () ()

—3n (1 =n) (14n€) T2 +nn (1 - w) (1— ) 708
— (Dl = uS!) CF = (1= m)nTySf + 2 (1= &) [nSHGI + (1 - n) SF G|
— - 522 [ Van i (k) + (1 — n) Vargi ()] + tip. + O (IE]F)

Hence

UZ% = 30 (BF) -5 (o, +) {n (@) +a-n (@f’ﬂ

#1=€an[n (@ -G) - (C - )]
—in(1—n)(L+n€) I7 +nn (1 —n) (1 - &) LGP

— (D" = nSF) O = (1 =m)nTiSf + £ (1= &) [nSFCI + (1 —n) ST G/ |

—%1—2@ (nVarpy; (h) + (1 —n) Varsy, (f)] + t.ip. + O (HSHE’) .
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Now, express everything in terms of gaps:

e
= —%(p+n)<atw—5fv)2_l2__ff(pg+n) {n(éfl_éf)2+(l_n)(@f_éfﬂ
0o [n (@ -G - (@ -ar)) v (@ e - (6 -ar)) |

~tn (=) (1 +ne) (T, Tt) +m (1 -n)(1-¢&) (T~ 1) (GF - GF)

—(p+n)@fvéfv—n1g—fc(pg+n)@féf[ (1-n)% S (p, + 1) GIGE
+N(1—£C)n@W@W—n(1—&)n@vvéf—n(l—é*c)nCtWGern(l—é*c)nCN?fI@f
+(1=n) (1 =)0l CY — (1=n) (1= €)nClGF — (1 —n) (1 - €)nCVGF
+(1—n)(1— &) G GF

—n(1=n) (14 05) TiTi+qn (1= n) (1= &) TG +qn (1 —n) (1 - ) T,GF

— (D" = nSF) O = (1= m)nTiSf + 2 (1= €) [nSFCI + (1 —n) ST G|
- 122 [0 Van, i (k) + (1= n) Varg ()] + tip. + O (IE]F)

where products of natural levels of variables have been put into the “t.i.p.”. Simplify the

previous expression:

~ ~

= (e (CF = OF) — ke [p, + 01— €] (GF - GIF)

[y 1= &)] (GF =) —n—c)n (G - ) (@ - ar)
~(=n =& (G -CY) (Gr -ar)

(=) () (T = T) 4 () (- &) (T~ T) (GF - GF)

1—
—(1—n) 250

—<p+ns>6W5W (1 5>6W6W (1- >5W@W
& [p+n(1-€)] GI'GY - )i [+ (1= &) GEGY

— (pD}" —nS)") CV —n(1—n)nT,SE+ = (1-¢) [nStH@f{ +(1—mn) StFCAJf]

— 222 [nVar,§i (h) + (1 — n) Varg§i ()] + tip. + O ([|€]*),
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We can rewrite this expression further as:

= Lo+ ne) (CF - O —nk& [p 40 (1 - €] (GF - GF)
~(-m) 5 [, +n (-] (GF - GF) —n(1-g)u (0N~ ) (G - ar)
~(=m)(1-&)n(CV-C) (G -ar)
(=) (1 tne) (T-T) +m-n-g) (T -T) (6F - aF)
+AcwCV + AauGT + AqrGF + ArT,
— o B9 [ Vany 5, () + (1 — n) VargGi ()] + tip. + O (J€])

26,
where
— =D + 08t — (p+m) O + (1-&)n (CF - GY)
Aen = —n(1=E)nC —ng [p, +1 (1= €] G = (1 —n) (1= &) Tp + & (1= &) nS/,
AGF = —(1—71)(1—50)7’]6?/_(1_”)12—?[pg_}_n(l_gc)}éf—i_nn(l_n)(l_gc)ﬁ
+E(1-&)1-n)Sf,
Ar = —n(1=n)Q+n&) T +ngn(1—n)(1—£)GE—n(1—n)nSE.

We shall now work out these coefficients. However, before doing so, we make use of

G = P S+ ¢.D)Y),
plp, +n(1—E)] +néep, (S +&D7)
av o P, v Pl (=&))L
! plog+n(L=E)] +nép, — plpg+n(1—=E)] +nép,
so that
5W . éw _ NPy SW . p [pg +n (1 B gc)] DW
! ! plpg+n(1=E)] +népy * plpg+n(1—E)] +nlp,
np w w
- St + th
plp,+1(1—E&)] +néep, ( &Dr)
_ 1 (pg— ) G p(pg 1) w

t t

plp, +n(1=E)] +néep, plpg+n(1—=E)] +nép,

17



and

1 ~ ~ ~
= (o, +m) GV = (CF = G ) + sV

3 3
1 np - -
- T Sy Dy
€e (pg+n)p[pg+n(1—€c)}+77§cpg( &)
- 1 (py = p) W p(py+1) e
plpg+n(L=E)] +népy — plpg+n(1—8&)] +nép,
+§%va
|t np (py +n) . 7 (o, — p) | gw
Seplpg+n(L=E)] +népy  plog+n(L=E)] +nkpy |
H np (py + 1) B o (py + 1) oW
ooy +n(0=E)] +nkpy  plpg+n(1=E)] +néepy|
1 n w
- = —p) - 1-¢)] - s
AT ) [0 (pg +1) + 8 (0, = p) = p g + 1 (1= &)] —nep,] Sy
1 n W
= —— —&mp— 1-¢)]] S
AL [0 (pg+1) —Ep = p [pg + 1 (1= €.)]]
1 n W
= — - S
Eeplp,+n(1—€)] +nEep, 2 (pg 1) = Loy + )] 5,
)

18



Hence,
Acw = —thW+nStW—(p+n)5fv+(1—£c)n(5fv—éfv)
= —pD;" +nS;"

—(p+n)

np, v P [pg +n(1—¢.)] oW
plpg+n(L—=E)] +nép, — plpg+n(1—E)] +nép,

n(py — 1) w p(py + 1) DW]

+(1—=¢&.)n

- t

plog+n(1=E)] +nép, * plpg+n(1—E)] +néep,
_ i (p+m)py (L=&)nlpy=p) | qw
plpg+n(L—E)] +nép,  plog+n(L—=E)] +népy|

o gt =€)] (o) (1—¢)n(p,+n) w
P [1 plpy+n(1—E)] +nép, T [Py +n(1—¢,)] +77§cpg] b

= d 1-— — 1— _
plog+n(1=E)] +nkep, o Lpg 0= €} H0kepy = (o) g+ (=8 oy = 1)
B p plpg+n(1=E)] +nEp, 1 W
plog+n(L—E)] +népy L = lpg +n (=& (ptm)+ A =E)n(p,+m) |
_ d . o a
p[pg_}_n(l_éfc)}_i_ngcpg [ppg+n£cpg (P+77)Pg+( fc)ﬁpg} t
_ p B e
oTo (=) +nr, [Py + 1€y — py (p+ 1) = 0> (L= &)+ (L =€) n (py + )]
_ p o o
plp, +1 (1 —E)] +nép, 76y = pyn + (1= &) ney] D

= 0.
and, noting that G# = GV — (1 —n)GE, SH = SV — (1 —n) SE and T, = —ngNJfL:

Yoy = —(1-€)n0l = 5 [p, +0 (1= )] [GF = (1-n) T
+np, (1= n) (1 s)aR FEA-&)[SY — (1) S
N e P Y A R (5W—6W)+%Stw
= [, + (1 - 5)](1—n>GR+npg<1—n>< €GB - 21 -€) (1) S

= 04+0=0,
and, noting that GF GW + nt, SE =S +nSE and T, = ngR
Ao = —(1—€)nC =2 o, +n(1-€)] |G +nGF]
—npgn (1 =€) GI'+ & (1 =€) (S +nSf)
= 0= "0 [ 0 (1= €] Gf + mp,&.GF — S|
= 04+0=0.
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and, noting that 7, = —pgéf:
Ar = —n(l=n) (1 +n€) Ti+mn(1—n)(1—€)GF =y (1 —n)nSE
= —n(L=n) [(1+9€) T =7 (1 - &) G+ S|

= n(l-n) [<1+n£c>pgéf+n<1—5c>éf‘”5ﬂ
= 0+0.

Concluding, we have that:

) e [, 0 (1—€)]) (GF ~GF) —n(L—c)n (G - O) (GF - )
—(1-n)(1-&)n(CV-aV) (Gr -ar)
(1l -n) (1 4ne) (T~ T) +ma-n-¢) (7 -T) (GF - aF)
— - L [ Van G (B) + (1 = n) VargGi ()] + ti.p- + O (J€]F)

—1n(1—n)(1+ 7€) ( ~T) +m(-n)(-¢) (T -T) (GF - &F)
_22 L (nVary g, (h) + (1 — n) Varg, (f)] + t.i.p. + O (||€]%) -

The final step is to derive Var,y; (h) and Varsy; (f). We have that

vary, [logy, (h)] = o?vary, [log p; (h)] .

We have
vary, [logpy (h)] = vary [logp, (h) — p—1] = Ej [logp; (h) — ]5t—1]2 — (Aﬁt)2

= o"E, logpi—1 (h) — ]3t—1]2 + (1 - OéH) [log p¢ (h) — ]3t—1]2 — (A]jt)2

= OéHVal“h log pe—1 (h)] + (1 - OéH) [log p¢ (h) — ﬁt—ﬂ? - (Aﬁt)Qy
where

pr = By [log p; (R)].
Further,
pr — D1 = (1 — ™) [log fr (R) — pr_] .

Hence,

H

vary, [log py (h)] = o vary, [log pi—1 (h)] + % (AR
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Using
pr =log Py, + O (JI¢]1)

we have:

vary, [log py (h)] = aTvary, log i1 ()] + 12 (x11)* + O (|I¢]°) -
Hence,

vary, [logp; (h)] = (aH)t+ vary, [logp_1 (h)] + Z of W§)2 +0 (Hf”g)
t
= 3 (o) 2 (7 + tip. + O (E)P)
s=0

Hence,

S8 van, flogpe ()] = d > B (x)” + tip. + O (II¢]*)

t=1 t=1
where

aH

a? =

(1—afB)(1—a')
Similarly, we derive for Foreign:

Zﬁt_lvarf logp; (f)] = d* Zﬁt_l (Wf)z +tip. + 0 (||§||3) ;
t=1 t=1
where
oF

= e A= al)

Hence, the second-order welfare approximation is given by:

Z B Eg [wy]
=1

where

we
UcC

(
~in(1=n) (1 +n5) (T

[nanH (Wf)Q +(1—

(o) (CF — ) —nk [, -] (GF - @)’
=) 55 [, 4+ (1= €] (GF = GF) = (1= (G - CY) (G - )
) +m-n(-¢) (T~ 7) (G- GF)
n)o%d” (xf)’] + tip.+ O ().

1 14no

28, o

Hence,

wy = 2UcC (1+no) o/, *

;
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_ E(ptnt,) w AW n(1-6)[p,+1(1-€)] (An A
(EW)U (C;t — G ) - A tno)o (G _Gt)
(1-n)(1-€.)|py+n(1-€.)| (AFr ~F 26,.(1-¢,) w  Aw\ (AW AW
< - (1+nag)0 (Gt _QGt) (14no)o (C O ) (Gt - Gt >
n(1-n)é.(14ns,) (7 _ 7 2nn(1-n)é (1-¢.) AR _ R
= [nd" (xf1)? + (1 = ) d¥ (xf)°] + tip. + O (J¢IF)
\




Observing that [nd” + (1 —n)d"| = [n/k" + (1 —n) /k*] / (1 4 no), ignoring an irrele-
vant proportionality factor and the terms independent of policy, the second-order welfare

loss approximation is given by:

L= i B R (L],

t=1

where
L= e (G =) o (Ti=T) -+ (GF = GIf) 6 (GF = GF) -+ 2 (=l1)" +
M () 4 de (CF = CF) (GF = GIY) = e (T - T) (GF - GF).

Ao = ElptnE), Mr=nl-n)&(1+nE), Ag=n(l—E&)[p,+n(1—E&)],
(1-m) (=€) [, +n(—&)], M =nofk, A =(1-n)o/k",
)\CG = 250(1_50)777 )‘TGEQn(l_n)Sc(l_SC)T/

>
Q'
I

E Optimal commitment policies with equal rigidities

For convenience, let us define:
ko= ET(14ng),  kp=ET(1+0E),
ko = k'(p+né), ke =k (p+ns.),
kg = En(1-¢&),  kg=kn-¢),

Because rigidities are equal, we further define:

a = o =df, k=k" =k,
kr = ki =k, ke=k{ =k,
/{ZG = /{Zg:/{?g,

so that we can write (30) and (31) as, respectively:
nfl = Bl + (1= n) by (T-T) +he (CF = CF) + ko (G = GI), (A5)
nf = PRl —nkr (T—T.) + ke (CF = OF) + ke (GF = GF). (A.6)

To solve for the optimal policies under commitment we set up the relevant Lagrangian
(see, e.g., Woodford, 1999a):

= K i B Ly
+2¢ 4 [Wt 57Tt+1 kr (1 —mn) (ft - ﬁ) — ke <6W - 61W) — ke (éf B éf)}
+20s, [Wt Bt + kn (Tt Tt) — k¢ (CW CW) — kg (G GF)]
265, (T = T0) = (Toa = Tia) = nf 47l + (T = Tia) |}

22



where 2¢, ;, 2¢, ;, and 2¢5; are the multipliers on (A.5), (A.6), and (32), respectively, and

L, is given by (34). Optimizing over @W -y, T, - T, nl 7 @f —GH and éf - GF
yields the following six necessary first-order conditions for ¢t > 1,

Ac (@W - @W> + Aoa (@W - étw> — ¢1 ke — ke = 0,

Ar (ft - Tt) — Arg (éf - éf) - ¢1,tkT (1-n)+ ¢2,tan + ¢3,t - 5¢3,t+1 =

)\erf + ¢1,t - ¢1,t—1 + ¢3,t =

)\erf + ¢2,t - ¢2,t—1 - ¢3,t =

TL)\G (@f — éf) + n)\cg (@W — étw) + )\TG (ﬁ — ﬁ) — ¢1,th =

(1—1n) A (Gf —éf) 4 (1= 1) de (@W —@W) ~ e (:E—ﬁ) — Gy kg = 0.

c o o o

Use the values of the loss function parameters to get

(kctofo) (CFF = OF ) + (hotofo) (G = GI) = (61, + b2,) ke =0,

(krn (1 =) &/0) (T = Ti) = (kon (1 = n)€./0) (GF = GF)
_¢1,tkT (1 - n) + 9252,,5an + ¢3,t - 5¢3,t+1 =0,

mrf + ¢1,t - ¢1,t—1 + ¢3,t =0,
(1—n)m + Goyp — o1 — P34 =0,
n (ke [o,/n+ (1= €] /o) (G = GIF) +n (kat /o) (CV — CVY)
+ (kon (1 = n) &/0) (T = Ty) = 1,k = O,

(1=n) (ka [py/n+ (1= €)] /o) (GF = GF ) + (1= n) (ke /o) (CF = CIF)
~ (kon (1= n)€./0) (T = Ti) = 6uhc =0,

Hence,

~ ~ k ~ -
/o) (G =)+ (fEee) (6 = GF) = (v en) =0 (AT)
(krn (1 =) €,/0) (T = Ti) = (kon (1 = n)€./0) (GF = GFY)
—¢1 ikt (1 —n) + ¢g hrn + ¢3, — Bds 1 =0,
mrf + ¢1,t - ¢1,t—1 + ¢3,t =0, (A.8)
(1 - n) Wf + ¢2,t - ¢2,t—1 - ¢3,t =0, (A,9)
n([p/n+(1=€)) fo) (G = GI) +n(e./o) (CF = C)
+(n(1=n)&fo) (T = T0) = ér, =0, (A.10)
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(1=n) ([og/n+ (1= £&)] /o) (GF = GF) + (1 =n) (¢/0) (CF - )
~(n(1=n)&/0) (T, = T) — by, = 0. (A11)
Adding the last two conditions gives
([pg/n+ (1 =&)] /o) (GIF = GIY) + (&./0) (CFF = CIF) = 61+ .
Combine this with the first equation:
~ ~ ka ~ ~
(€/0) (G =) + (e /o ) (G = G) = oniot 0ns
to get
([pg/n+ (1= €] fo) (G = G} + (&) (G = CF)
= (/) (O =)+ (o) (G -ar) =
(/o (1= €]) (G - @) = (2. ) (6 - ).

from which it follows that

GV -GV =o,
unless i
_ MG
Pg/77+ (1 - gc) - kcgc <

pe/n+(1—=¢&.) = )
pe(p+n&) n+ (1 =E)(p+ns) =n(1-E)E <
Pep/N+ Py + (1= &) (p+n€ =) =0 =
Pe/ N+ pySe/p+ (1 =€) =0,
which is never the case. Hence, the world government spending gap is closed under the

optimal plan.
Adding (A.8) and (A.9) yields

T+ (¢1,t + ¢2,t) - (¢1,t—1 + ¢2,t—1) =0,
and, therefore, by (A.7)
A (e [(E - ) - (am—am)]
We now turn to the characterization of relative variables. Equations (A.10) and (A.11)

can be rearranged to (by multiplying the first by (1 — n) and multiplying the second by

n and then subtracting the first from the second)
(L =n)n ([p,/n+ (1= &) Jo) (GF - GF)
—(n(1=n)&./0) (T. = 1) = non, + (1= n) 61, = 0. (A.12)
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From the “inflation equations” (A.8) and (A.9) we get
(L =n)nmf +n (¢gy — Gayq) — (L=1) (1) — ¢141) — b5, =0 &
(I =n)nr +ndy, — (1 —n) ¢y, —ndyyy + (1 —n) ¢y, q — dg, =0.
Therefore,
(=)l + (L= n)n ([p,/n+ (1= &)] fo) (GF = GF) = (n (1 = n) &, /o) (T, - T)
—(t=n)n ([p/n+ (1= €)] fo) (G =Gy ) + (n(1 =) &/0) (T = Tica) = o3,

(= m)nrf+ (L =n)n ([p,/n+ (1= &)] fo) [(GF = GF) = (GF, - G1)]
—(n(l—n)&./o) [(Tt - ﬁ) - (ﬁ—l - ﬁ—l)} = P34,

w4+ ([pg/n+ (1 =€) Jo) |(GF - GF) - (GF, - L)
—(&./0) [(ﬁ - ﬁ) - (ﬁ—l - ft—l)} = ¢3,m
or, by use of (32),
wf+ ([og/n+ (1= &)] Jo) |(GF - GF) - (GF, - G|
— (&) [7f = (T = Tir) | = 6ns
which becomes
mf (1= &/0) + ([pg/n+ (1= €] Jo) | (GF = GF) - (R, - GI,) |
(/o) (T = Tit) = 0
Now examine

(krn (1= n)&./0) (T, = ) = (hon (1 = ) &, Jo) (GF — GF)
— ¢y ik (1 —n) + ¢g hrn + @3, — Bz, =0 &

(n(1=n)&./o) (T~ T)) - (’,j—% (- n) §c/0) (Gr—cn)

¢3,t - 5¢3,t+1
kr

_¢1,t (1—mn)+ ¢2,tn + = 0.

We find ng,; — (1 —n) ¢;, from (A.12)

(1=mn ([o/n+ (1 =€) /o) (GF = GF) = (n(1=n)&./o) (T~ T
= n¢2,t —(1—n) ¢1,ta
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to get:

=)o) (T~ T) - (n(1-n)e/a) (65 - GF)
+ (1 =n)n ([p,/n+(1-€)] Jo) (GF - GF)
- (=& fo) (T - T) 4 22 oneet
=0

(=) | (afn+ (=€) /o) = 12 (e.fo)] (G - G + 226720051

Using that

kT 1+ 77£c 7
we get
(I-—n)n n(1—&)&] (AR _ AR\, D3t = BPsumn

0 o+ - ) - PG5 (G- ) 4 S

and then
kr (1 — +&.p, + (1 =&,

P34 = PPgpi1 — r{ pu n)n {Pg/ﬁ iignﬁc( £>] (GR GR>

Hence,

kr (1 — +&p, +(1=6)] = i (A ~
P34 = — o o oL {'09/77 1_’?_97760( )] ZOB (Gﬁ—i_Gﬁi)‘

To sum up, we have

——(£C/0)[(afv—éfv)—(@fl—@fﬂ)}, @;}V:é?/u

mf (1= /o) + ([py/n+ (1L =€) Jo) | (GF - GF) - (GF, - GF,) |
+(6/o) (T = Tit) =
kr (1— Pt (1= €N fmr ~
P34 = — v > n)n {99/774“:5[?7]‘2( 5)} Zﬁz (Gﬁ-i_Gﬁ-i)>
¢ i=0
which, somewhat rewritten (using (25)), is the system (39)-(41). Together with the Phillips

curves the system determines the six endogenous variables (@W — ), (CAJtH —GH ),

(GF GF) m, mf and ¢,
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F Optimal discretionary policies with equal rigidities

Before we analyze this problem, we note that for any generic variable X, the following
holds:
n (XH)? 4 (1—n) (XF)* = (X") £ n(1—n) (XB)2.

Using this, we can rewrite L, as:
Li=L"+n(1-n)LE
where
A N2 ~ N2 ~ ~ ~ ~
LY =N (G =G ) + 0 (GF =G ) + (') + 20 (G = ) (G -G,
(A.13)
2 ~ < N\2 o~ AN [~ ~
LR = \E (ﬂ - ﬂ) + (7F)* + AE (Gf _ Gf) — oAl (Tt - Tt> (Gf - Gﬁ) . (A14)
where (having multiplied all the preference weights by the common factor k/o, which

leaves all results unaffected):

)\W — kCSc )\W — kG [pg + n (1 - Sc):| )\W — kGSC
¢ — o ) G — no ) cG — o ’

)\R — kTSc )\R — kG [pg + n (1 - gc)} )\R — ngc
T — P ) G — no ) TG — o

We observe that the combination (A.5) and (A.6) can be restated in terms of world

and relative variables exclusively:
W = BB, + ke (aw - @W) + ke (atW - étW) , (A.15)

mf = BBty — by (T, = T0) + ke (GF - GF). (A.16)
The problem is to minimize the stream of L;, subject to the constraints (A.15), (A.16)
and (32). Since the nominal interest rate can be adjusted freely at no loss, we do not
treat equation (27) as a constraint, but assume that the consumption gap is treated as the
monetary policy instrument directly, which together with the world government spending
gap and the relative government spending gap forms the full set of policy instruments.
Having realized this, part of the discretionary optimization becomes simple; namely the
choice of world consumption and world government spending. Notice that these variables
do not affect the relative inflation rate, and nor do they affect the terms of trade directly;
cf. (A.16) and (32). Equally important, the variables enter the loss function additively
separable from the terms of trade and relative government spending. Hence, the optimal
choice of the consumption gap and world government spending gap can be cast as a
problem of minimizing the discounted sum of L}', taking as given the path of relative
inflation rates and the terms of trade, subject to (A.15). This can be labelled as the

“world part” of the problem. One can then independently of this determine the optimal
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relative spending gap as the one that minimizes the discounted sum of L%, taking as given
the path of world government spending, the world inflation rate and the consumption gap,
and where the minimization is subject to (A.16) and (32). This can be labelled as the

“relative part” of the problem. We now turn to solving these two parts.

F.1 “The world part”

The “world part” of the problem reduces to a sequence of static optimization problems of
the form

min LY st (A.15)
(CHECDNCECH

taking as given E;m)Y;, as the period-t consumption gap or government spending gap have
no dynamic implications.

Substitute (A.15) into (A.13). Then, the necessary and sufficient first-order conditions

for the world problem are:

(kc€o/o) (CF = C ) + keml” + (kat/o) (G = GIY) =0

(ke [py/n+ (1= €] /o) (GI = GIY) + kol + (kat.fo) (CV = CF) =o.
Reducing these equations slightly, reveals the following:

(€/0) (G =)+t 4 () (G -ar) = o

]{300'
oo/ -+ (1= €] /o) (G = G ) 47l + (6u/o) (G = CF) = 0.
Hence, world government spending follows as
GV -GV =0,

hence,’

A= e (G

T
F.2 The “relative part”

The “relative part” of the discretionary optimization problem involves, as mentioned, the
choice of relative government spending. For this purpose, it is important to acknowledge
that this choice only affects the relative inflation rate and the terms of trade. As these
terms enter additively in (A.14) (and relative government spending only enters multiplica-

tively with the terms of trade), the problem “reduces” to one of minimizing the discounted

!The generality of this solution requires that

ke 2 (o +(1-€)] o

which is easy to confirm.
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sum of (A.14) subject to (A.16) and (32). This problem does not correspond to a sequence
of one-period problems, as the choice of (@f — éf) affects 7, and thus (ft — ﬁ) with
direct loss implications through the next period’s terms of trade (by the dynamics of (32)].

The period-t problem is therefore solved by dynamic programming with past period’s

terms-of-trade gap as the state variable. L.e., the problem is characterized by the recursion
V(i1 =T

— min Ei {(kTgc/a) (ﬁ - ﬁ)2 + (kG [py/n+ (1 =€) /o) (@f — 55)2

(GF-GF)
+ () ~2(hotofo) (T~ T) (GF - GF) + v (T~ T.) )

where V' is the “value” function, and where the minimization is subject to (A.16) and

(32). Now, combine these constraints to
Wf = 5Et7ﬁ1 — kr [(ﬁ—l — ij15—1) +7T? - (Tt - iﬁ—l)}
+he (@f - éf) .
To proceed with the solution, assume that YN} — TN}_I follows an AR(1) process.? Therefore

we conjecture that the solution to the relative variables will be linear functions of the state

and driving variables. l.e., we conjecture that
= —b (T’t—l — ﬁ—l) + by (ﬁ — ﬁ—l) ) (A.17)

where b; and by are unknown coefficients to be determined. By use of (A.17) one obtains

relative inflation as
W= 3 (B ) 4 0 o (T - )
—kr [(ﬁ—l - ij15—1) +7Tf — (ﬁ — iﬁ—l)] + kg (af - éf) )

T = —bf [(T’t—l - ft—l) + - (fﬁ - ﬁ—l)} + BE; [bz (ﬁ-H - ﬁ)]
—kr [(ﬁ—l — ij::—1) + 7 — (Tt - ﬁ—1)} + kg (@f - éf) )

T (L+ 0B +kr) = —(01f+kr) [(ft—l - fﬁ—l) - (ﬁ — ﬁ—l):|
+ke (@f — éf) + SE, [52 (ﬁﬂ - ﬁ)] )

2As Tt — ﬁ_l is a linear function of the underlying productivity shocks, we could also have assumed
that these shocks followed AR(1) (or more general) processes and formulated the conjecture in terms of
the state and all these shocks. This, however, would make the exposition more messy, without affecting
the characterization of optimal relative spending gaps; cf. below.
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wfo= e (L - T - (R T)] (A9

1+ WS+ kr
B8 by (Tia = 1) |

1+018+ kr

ko
1+ 68+ kr

+ (Gr-ar)+

and the terms-of-trade gap as
b8+ k ~ ~ ~ =
L I |

1B+
ko BE: by (Ti — T1) |

+1+blﬁ+kT<@f_éf>+ 1+ b8+ kr
(fi- ),
and, thus,
-T = 1 (B~ Tr) - (B-Tia)) (A19)
o BE, |by (Tyr — T,
+1+bfg+sz (G -Gr)+ tk&;tk;)]‘

One can then insert (A.18) and (A.19) into the value function and obtain an unconstrained

minimization problem. The first-order condition for optimal @f - éf is
o(T,-T,)

TCEDN (kg [py/n + (1= €.)] Jo) (GF - GF)

(kré./o) (T, T0)

R
on,

) (@f . éﬁ)

+ () - (ka&./o) (T - T))

o(T,-T)
a(@f—éﬁ)

o(T,-T,)
a(éﬁ—éﬁ)

- (ke /o) (G~ GF) +5ov! (T, - T)

_ 0,
or,
(hré./o) (T~ T:) Hbfﬁ + (ke [p,/n+ (1= €] /o) (G - GF)
() e — (katefo) (T~ T0) = Gkt /o) (G = OF) fpe e
50V (T~ T0) Hbfﬁ
- (A.20)
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Differentiating the value function with respect to (ﬁ_l — YN}_I) yields:

o(T,-T)
(71 -Ti)

3V (=) = tesyo) (T-T2) -
) (@ﬁ - éﬁ)
0(Tia—Tia)
) (éﬁ - éﬁ)
0(Tis—Tia)

+ (k [py/n + (1 =€) /o) (GF = GF)

T I jo) (T~ 1)

o7
»(7-17)

- (fate/o) ( ) (Ttl—Tt 1)

0 (Tt =T 1)
By the Envelope Theorem, we eliminate all terms involving 0 (@f - éf) /O (ﬁ_l — ﬁ_l)
[the explicit ones and those implicitly appearing in 0 (ﬁ — ﬁ) /0 (ﬁ_l — YN}_1> and
orlt/o (ﬁ_l - YN}_I)] to get:

1, /= ~ B 1 r LB +kr
2V (Tt‘l_Tt‘l) = (k. /U)< Tt>1+b15+kT_7rt1+blﬁ+sz
~ ~ 1
1
!/
3 BV (Tt T) 1+b18+kr (4.21)
Multiply on both sides by kg to get
kq R biB + kr

k’G / -~ o T T D —— I 5 1 5 1
—V (Tt 1= Tt—l) = (kr€./o) (Tt_Tt)1+blﬁ+kT Tt Gl—i—blﬁ-l-k’T
~ ~ k
_ R_ARY__ N
(kaé./o) (G Gt) 14013 + kr

430V (1~ T) 1o
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and add this to (A.20):
~ k
(kré.fo) (T, - T0) T——2

Tt el /n+ (=€) /o) (GF - GF) +

(t) T = Ul (T = T) = (hotefo) (G - GF) 1o
+%BV’ (7.-7.) Hbf’% 4 %GV' (Tia = Ti)
= o) (=) T — e
-~ (hatfo) (61 = GF) tpre + 50V (B- 1) T
which simplifies to
(ka [+ (1= €0)] f0) (GF = GF) + (o) T

o~ L . _
— (k€./o) (T = T) + V' (Tir = Tia)
_R b5+ kr
Y 0B+ k)
from which one gets
1 ~ ~ ~ ~ —~ ~
SV (Tir = Tia) = €/o) (T T) = ([pg/n+ (1 = €] /o) (GE = GF) =

Forward this one period, and use it in (A.20) to eliminate the derivative of the value

function:
(ket.fo) (T, - ) Hszﬁ + (ke [p,/n+ (1 - €] /o) (GF - GF)
(8 T (o) (T ) = et o) (8F - GF) e
e (6B (T = Tiws) = (/i + (1= €] /o) Ex (G, - GE,) — Bl
o
and thus
e (B T) + o+ 10— ] (GR - GF)
6 (B T) - ey (G- ar)
+ﬁ (6B (Tos = Toa) = [/ + (1= € B (G, — G, ) — 0Bl
=0

J

or,

14+ B+ kr 14+ 0B+ kr 1+ 0.8+ kp

% [§CEt (ﬁ—i—l - Tt-&-l) — pE (éﬁ—l - éﬁu) - UEtﬂﬁl}

S 09) (o ) (610
+
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with
This is further reduced to

&, (1+018) (T = 1) + (u[1+ 0a + br) — £ k) (GF = GF) + oml

+05 [cht (YA}H — YN}H) — uE; (@ﬁu — CNJ,{L) — UEtﬂ'ﬁ_I:|
= 0. (A.22)

This equation will, together with (A.18) and (A.19), provide solutions for the paths for
(@f — éf), (YA} — YN}) and 7 as functions of the state and (YN} — YN}_1>. Given the

assumption about the stochastic properties of (TN} — YN}_1>, the solution can be character-
ized by the method of undertermined coefficients. The coefficients found in this step will
be functions of the unknown parameters b; and by. These are then finally identified by
equating the coefficients in the solution for 7/t with those in the conjecture (A.17).

Although (A.22) is a rather involved expression, the crucial difference with the corre-
sponding relationship (40) under commitment is that (@f_ , —GE 1) is absent from (A.22).
In other words, the history dependence that characterizes the optimal relative government
spending policies under commitment is absent under discretionary policymaking.

Note that indeed only the undetermined coefficient to the state variable appears in the
characterization of the solution of the system of relative variables as given by equation
(A.22). Hence, had we replaced (A.17), by a linear conjecture which depended on the state
and the underlying shocks [and assumed that these shocks were AR(1) or more general
processes|, we would have arrived at the same characterization of optimal relative spending
gaps as equation (A.22). The reason is that the impact of government spending changes
on the inflation differential and the terms-of-trade-gap only depends on the undetermined
coefficient on the state variable. The coeflicients on the shocks do therefore not affect
the first-order condition or the envelope condition [see equations (A.20) and (A.21)]. We
can therefore without loss of analytical generality arrive at equation (A.22) with our

parsimonious conjecture (A.17) as claimed in Footnote 2 of this Additional Appendix.
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